EPICS Application Developer’'s Guide

EPICS Base Release 3.14.10
5 January 2009

Martin R. Kraimer, Janet Anderson, Andrew Johnson, Eric Norum
(Argonne National Laboratory)

Jeff Hill (Los Alamos National Laboratory)

Ralph Lange, Benjamin Franksen (BESSY)

Peter Denison (Diamond)

EPICS Application Developer’s Guide

Table of Contents

Table of Contents

Tableof Contents.t 1
Chapter 1: Introduction. e 7
L VIO oottt e e e e e 7
1.2. Acknowledgmentsot 9
Chapter 2: Getting Started 11
2.1 INtrodUCtioNo 11
2.2. Example IOC Application 11
2.3. Channel AccessHostExample 13
22 T 13
2.5. Building IOC COMPONENES oottt e e e e e 14
2.6. MAKEBASEA DD - - ot ittt 17
2.7. vxXWorksboot parameters 20
2.8. RTEMS OOt procedure.ot e e 20
Chapter 3: EPICSOVEIVIEWo e 23
B L What iSEPICS? 23
3.2 BasiC ALIDULESo 23
3.3. Hardware - Software Platforms (Vendor Supplied). 24
3.4. |OC Software COMPONENtS oottt ettt 25
35, Channel ACCESSt 27
36, OPl TOO0IS. . oottt e 29
3.7. EPICS Core SOftWare.ottt et e 30
Chapter 4: EPICSBuild Facility. 31
A0 OVEIVIEIW .« .ottt e e e e e e e e e e e e 31
4.2. BUIld REQUIFEMENESottt e e e e e 33
4.3. Configuration Definitions 34
A MaKEfES . . o 38
A5 MaKE. . .o 39
4.6. Makefiledefinitions. 41
4.7. Table of Makefiledefinitions. i 64
4.8. Configuration Files 75
4.9. Build Documentation Files i 77
420.Startup Files. . ..o 78
Chapter 5: Database L ocking, Scanning, And Processing 81
L OVEIVIBIV « . et e e e e e 81
5.2, ReCOrd LinkS . .. oo e 81
5.3. Database Links.o 82
5.4, Database LOCKING. . .. oot e e 82
5.5, Database SCanniNgot 83
5.6. RECOrd ProCESSING . . . oot e 84
5.7. Guidelinesfor Creating DatabaseLinks 84
5.8. Guidelinesfor SynchronousRecords. i i, 86
5.9. Guidelinesfor AsynchronousRecords, 87
B5.10.Cached PULS. . . . oot 89

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 1

Table of Contents

B L PUINOLITY. o 89
5.12.Channel AcCeSSLINKSo e 89
Chapter 6: Database Definition., 93
8.1, OVEIVIBI . . oottt et e e e e e 93
6.2. Brief Summary of Database DefinitionSyntax. 93
6.3. General Rulesfor Database Definition., 94
B4, MENU . .. 97
B.5. RECOIA TY P . ottt ittt e e e e 97
B.6. DEVICE . . .ttt 102
B.7. DIIVEr o 103
6.8. Registrar Declaration.t e 103
6.9. Variable DecClarationt 104
6.10.Function DeClarationttt e 104
6.11.Breakpoint Table 105
6.12.ReCord INStaNCEottt 106
6.13.Record Information Item e 109
6.14.Record Attribute. e 109
6.15.Breakpoint Tables- DiSCUSSIONo v it 109
6.16.Menu and Record Type Include File Generation. 111
B.17.dDEXPANd e 114
6.18.d0L0adDatahase.o it e 114
6.19.d0L0AdRECOITS. . . . o\ttt e 115
6.20.dbLoadTemplate.ot 115
6.2L.doREAdTESt. . . .ot e 117
Chapter 7: 10C Initialization, 119
7.1. Overview - Environmentsrequiringamainprogram. 119
7.2.0verview - VXWOIKS. . ..o 120
7.3.0verview - RTEMS ... o e e 120
74 10C INitialization.o 121
5. TOC PaUSING . o\ vttt ettt et e e 123
7.6. Changing iocCorefixed limitso i 123
7.7 INtHOOKS. . . .o e 124
7.8. Environment Variables 125
7.9. INitidlize Loggingo ot e 126
Chapter 8: ACCESSSECUNitY . ..ottt e e 127
B L OV BV . o o ettt et e e e e 127
8.2, QUICK StaIt. . . .ottt 127
8.3 USEr SGUILE . ..ottt 128
8.4, DESION SUMIMANY . . o oottt et ettt et et 133
8.5. Access Security Application Programmer’sinterface 135
8.6. Database ACCESS SECUNLY . . oot it e e e e 140
8.7. Channel ACCESS SECUNTY . .. oo v vt e e et e e 142
8.8. Trapping Channel AccessWHIiteS et 144
8.9. Access Control: Implementation Overview, 144
A0 SIIUCIUIES . . . oottt e e e e e e e e 146
Chapter 9: IOC Test Facilities. i, 147
0. L, OV VI BV . o ettt e e e e e e e 147
9.2. Database List, Get, PUtot 147
0.3, BreakpointS . . .ottt 149
0.4, ErrOr LOQgING .+« o v v vttt e e e e e e 151

2 EPICS Application Developer’'s Guide 1/5/09

Table of Contents

9.5, Hardwar€ REPOISottt e 151
0.6. SCAN REPOISo 152
0.7. General TiMe . . oottt 152
9.8. Access Security Commands.ov it 154
9.9. Channel ACCESS REPOIS. . . . oottt e e 155
0.10.INtErTUPL VECIONS ottt e e 156
O 1LMISCElANEOUS oot 157
9.12.Database System Test RoUutinges 157
9.13.Record Link REPOITS.o 158
9.14.0Id Database ACCESS TESHING .« . . oo oot e e 159
9.15.Routines to dump database information o i 160
Chapter 10: IOCError LOgging ovvviii i ei e 163
10,1 0VEIVIBIW . o o oot 163
10.2.Error Message ROULINESo oottt e e 163
10.3.emlog LiStenerso e 165
104.errlogThread e 166
10.5.console output and MESSAgE QUEUE SIZE . . .o oo v v e it e e i 166
10.6.StAUS COUES\ttt 166
10.700CL 00 .« vttt e 167
Chapter 11: Record SUPPOrt . .. oot 169
R = 4 T 169
11.2.0verview of ReCOrd ProCESSING . . .« oo vttt et et e s 169
11.3.Record Support and Device Support Entry Tables. 170
11.4.Example Record Support Module. 171
11.5.Record SUPPOrt ROULINESot 177
11.6.Global Record SUpPOrt ROULINES. oo 181
Chapter 12: Device SUPPOIT. . .ottt 185
2.0 0VEIVIEIW . . oottt et e 185
12.2.Example Synchronous Device Support Module. 185
12.3.Example Asynchronous Device Support Module. 187
12.4.Device SUPPOIt ROULINES. oottt 188
12.5.Extended Device SUPPOIt oot e 190
Chapter 13: Driver SUPPOIt. . ..ot e 193
13 L OVEIVIBI . o oot 193
13,2, DEVICE DIIVENS. . .\ttt 193
Chapter 14: Static Database ACCESSot v i 197
LA L OVEIVI B . oottt e e 197
142 DEfiNitioNS.o 197
14.3 Allocating and Freeing DBBASE 198
144ADBENTRY ROULINES. . . . oottt et et e e e e i 199
145Read and WriteDatahaseo e 200
14.6.Manipulating ReCOrd TYPES . . . oo vttt e 201
14.7. Manipulating Field Descriptions.t e i 202
14.8.Manipulating Record Attributes 203
14.9.Manipulating Record INStances. 204
14.10.ManipulatingMenu Fields 206
1411 Manipulating Link Fields 207
14.12. Manipulating MenuForm Fields 207
14.13.Manipulating Information Items.t 209

EPICS Release 3.14.10 EPICS Application Developer’'s Guide

Table of Contents

14.14.Find Breakpoint Tableo o 210
14.15.DUMP ROULINES.ot e 210
14,06 EXAMPIES ottt e 211
Chapter 15: Runtime Database ACCESS.o oo 213
15, L OVEIVIBIW ottt e 213
15.2.DatabaseInclude Files 213
15.3.Runtime Database ACCESSOVEIVIEWo vt et 215
15.4.Database ACCESSROULINES oot 218
15.5.Runtime Link Modification i 226
15.6.Channel ACCESSMONITONS.ottt 227
15.7.L0CK SEL ROULINES.ottt e e 227
15.8.Channel Access Database Links.t 229
Chapter 16: EPICSGeneral PurposeTaskscoovvvn.n. 233
16. L. 0OVEIVIBW ..ottt e 233
16.2.General Purpose Callback Taskso 233
16.3.Task Watchdog. oo v e 237
Chapter 17: DatabaseScanningoiiiiiiianannen.. 239
17 L OVEIVI BV oottt 239
17.2.Scan Related Database Fields.o 239
17.3. Scan Related Software Components.o vt 240
17.41mplementation OVEIVIBWt 243
Chapter 18: IOC Shell 249
18.LINtrodUCHION . ..ot 249
18.2.10C Shell Operation.ot e e 249
18.3.10C Shell Programming. . ..ot e 252
Chapter 19: libCom e e 257
19.0.bucketlib . ..o e 257
10 2.CaAIC . it 257
10 3 PP, . e 261
19.4.8DICSEXIt . . o oot e 261
105 OIS, . o oo 262
10.6.0XXTEMPIAESo 262
10,70 L 263
10.8llib. . 264
19.9.6PICSRINGBYLES. . . . ottt 264
19.10.6PiCSRINGPOINTES.\ ottt e 265
10,00 EDiCSTIMEr e 267
10,02, fdMgr .o 273
10031 EL ISt . o oot e 273
19.24.gPHASN 273
10.05.00gCHENE . . oot e 274
10.06.MaCLib . . oo e 275
10, 070MISC. & ettt 276
Chapter 20: libCom OSl libraries., 283
20, L OVEIVI BNV ottt et 283
20, 2. 8P CSA SN . . ottt 284
20.3.6PICSENIAN. oot 284
20.4.6DICSEVENT. . . .ot 284

4 EPICS Application Developer’'s Guide

1/5/09

Table of Contents

20.5.epicsFiNdSymbol 286
20.6.6picsGeEneral Time 287
20.7.6DICSINLEITUPL. . . . oottt e e e e 289
20.8.6piCSMath 290
20.9.6piCSMESSATEQUEBLIE oottt et e e 290
20.10.EDICSMULEX . . vttt e et e e ettt e e e e 292
20.12.epicsStAliD. . ..o 294
20.12.6DICSSHAIO . . oot t a 294
20.13.€piCSSIAIOREAITECE. . . . o v vttt 295
20.14.epicsThreado 295
20.05.60ICSTIME . o ettt e e 301
20.16.08IP00IStAtUS.ot 308
20.17.08Pr0CESS . . .o 309
20.18.0SISIGPIPEIgNOrE.ttt 309
20.19.081S0CK. N. .o 310
20.20. Device Support Library 310
20.21.vXWOrks SpeCific routings oot 313
Chapter 21 RegiStry. . ..o e e e 315
21 RegIStrY. N L e 315
21.2registryRecordTypeho 315
21.3.registryDeviceSupport.h 315
21.4.registryDriverSupport.h. 316
215 registryFunction.h 316
21.6.registerRecordDeviCeDrVEr.C.o 316
21.7.registerRecordDeviceDriver.pl 316
Chapter 22: Database Structures ..., 317
22 L OV VI BV . . o ettt e e e e 317
22.2.0NClUde RIS . .o 317
22 3 S TUCIUNES. . . .ot e e 319
Chapter 23: INDEX e e e 321

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 5

Table of Contents

6 EPICS Application Developer’'s Guide 1/5/09

Chapter 1. Introduction

1.1 Overview

This document describes the core software that resides in an Input/Output Controller (IOC), one of the major components
of EPICS. It isintended for anyone developing EPICS I|OC databases and/or new record/device/driver support.

The plan of the book is:
Getting Started
A brief description of how to create EPICS support and ioc applications.
EPICS Overview
An overview of EPICS s presented, showing how the |OC software fitsinto EPICS.
EPICS Build Facility

This chapter, which was written by Janet Anderson, describes the EPICS build facility including directory
structure, environment and system reguirements, configuration files, Makefiles, and related build tools.

Database L ocking, Scanning, and Processing
Overview of three closely related | OC concepts. These concepts are at the heart of what constitutes an EPICS 10C.
Database Definition

This chapter gives a complete description of the format of the files that describe IOC databases. Thisis the format
used by Database Configuration Tools and is a so the format used to load databases into an |OC.

IOC Initialization
A great deal happens at 10C initialization. This chapter removes some of the mystery about initialization.
Access Security

Channel Access Security is implemented in IOCs. This chapter explains how it is configured and also how it is
implemented.

IOC Test Facilities

Epics supplied test routines that can be executed via the epics or vxWorks shell.
IOC Error Logging

IOC code can call routines that send messages to a system wide error logger.
Record Support

The concept of record support is discussed. This information is necessary for anyone who wishes to provide
customized record and device support.

Device Support

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 7

Chapter 1: Introduction
Overview

The concept of device support is discussed. Device support takes care of the hardware specific details of record
support, i.e. it is the interface between hardware and a record support module. Device support can directly access
hardware or may interface to driver support.

Driver Support

The concepts of driver support is discussed. Drivers, which are not always needed, have no knowledge of records
but just take care of interacting with hardware. Guidelines are given about when driver support, instead of just
device support, should be provided.

Static Database Access

Thisis alibrary that works on both Host and 10C. For 10Cs it works and on initialized or uninitialized EPICS
databases.

Runtime Database Access

The heart of the IOC software is the memory resident database. This chapter describes the interface to this
database.

Device Support Library
A set of routines are provided for device support modules that use shared resources such as VME address space.
EPICS General Purpose Tasks
General purpose callback tasksand task watchdog.
Database Scanning
Database scan tasks, i.e. the tasks that request records to process.
IOC Shell

The EPICS 10C shell is asimple command interpreter which provides a subset of the capabilities of the vxWorks
shell.

libCom

EPICS base includes a subdirectory src/libCom, which contains a number of ¢ and c++ libraries that are used by
the other components of base. This chapter describes most of these libraries.

libCom OS|

This chapter describes the libraries in libCom that provide Operating System Independent (OSl) interrfaces used
by the rest of EPICS base. LibCom also contains operating system dependent code that implements the OSI
interfaces.

Registry

Under vxWorks osi FindGloba Symbol can be used to dynamically bind to record, device, and driver support. Since
on some systems this always returns failure, aregistry facility is provided to implement the binding. The basic idea
isthat any storage meant to be "globally" accessable must be registered before it can be accessed

Database Structures
A description of the internal database structures.

Other than the overview chapter this document describes only core |OC software. Thus it does not describe other EPICS
tools which run in an 10C such as the sequencer. It also does not describe Channel Access.

The reader of this manual should also have the following documents:

» EPICSRecord Reference Manual, Philip Stanley, Janet Anderson and Marty Kraimer
See the EPICS online wiki for latest version.

8 EPICS Application Developer’'s Guide 1/5/09

Chapter 1: Introduction
Acknowledgments

EPICS 10C Software Configuration Management, Marty Kraimer, Andrew Johnson, Janet Anderson, Ralph Lange
http://www.aps.anl .gov/asd/control s/epi cs/Epi csDocumentati on/A ppDevM anual s/iocScm-3.13.2/index.html

* VXWborks Programmer’s Guide, Wind River Systems
vxWbr ks Reference Manual, Wind River Systems
RTEMS C User’s Guide, Online Applications Research

1.2 Acknowledgments

The basic model of what an |OC should do and how to do it was developed by Bob Dalesio at LANL/GTA. The principle
ideas for Channel Access were developed by Jeff Hill at LANL/GTA. Bob and Jeff also were the principle implementers
of the original 10C software. This software (called GTACS) was developed over a period of several years with feedback
from LANL/GTA users. Without their ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the IOC software with the mgjor goal being to provide
easily extendible record and device support. Marty Kraimer (ANL/APS) was primarily responsible for designing the data
structures needed to support extendible record and device support and for making the changes needed to the 10C resident
software. Bob Zieman (ANL/APS) designed and implemented the UNIX build tools and 10C modules necessary to
support the new facilities. Frank Lenkszus (ANL/APS) made extensive changes to the Database Configuration Tool
(DCT) necessary to support the new facilities. Janet Anderson developed methods to systematically test various features
of the |OC software and is the principal implementer of changes to record support.

During 1993 and 1994, Matt Needes at LANL implemented and supplied the description of fast database links and the
database debugging tools.

During 1993 and 1994 Jim Kowalkowski at ANL/APS developed GDCT and also devel oped the ASCII database instance
format now used as the standard format. At that time he also created dbLoadRecor ds and dbLoadTenpl at e.

The bui | d utility method resulted in the generation of binary files of UNIX that were loaded into 10Cs. As new 10C
architectures started being supported this caused problems. During 1995, after learning from an abandoned effort now
referred to as Epi csRX, the build utilities and binary file (called def aul t .dct sdr) were replaced by all ASCII files.
The new method provides architecture independence and a more flexible environment for configuring the record/device/
driver support. This principle implementer was Marty Kraimer with many ideas contributed by John Winans and Jeff Hill.
Bob Dalesio made sure that we did not go too far, i.e. 1) make it difficult to upgrade existing applications and 2) lose
performance.

In early 1996 Bob Dalesio tackled the problem of allowing runtime link modification. This turned into a cooperative
development effort between Bob and Marty Kraimer. The effort included new code for database to Channel Accesslinks,
anew library for lock sets, and a cleaner interface for accessing database links.

In early 1999 the port of iocCore to non vxWorks operating systems was started. The principle devel opers were Marty
Kraimer, Jeff Hill, and Janet Anderson. William Lupton converted the sequencer as well as hel ping with the posix threads
implementation of osiSem and osi Thread. Eric Norum provided the port to RTEMS and also contributed the shell that is
used on non vxWorks environments. Ralph Lange provided the port to HPUX.

Many other people have been involved with EPICS development, including new record, device, and driver support
modules.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 9

Chapter 1: Introduction
Acknowledgments

10 EPICS Application Developer’'s Guide 1/5/09

Chapter 2. Getting Started

2.1 Introduction

This chapter provides a brief introduction to creating EPICS 1OC applications. It contains:

* Instructions for creating, building, and running an example 10C application.

* Instructions for creating, building, and executing example Channel Access clients.

* Briefly describesiocsh, which is a base supplied command shell.

* Describesrulesfor building |OC components.

» Describes makeBaseApp.pl, which isa perl script that generates files for building applications.
« Briefly discusses vxWorks boot parameters

This chapter will be hard to understand unless you have some familarity with |OC concepts such as record/device/driver
support and have had some experience with creating ioc databases. Once you have this experience, this chapter provides
most of the information needed to build applications. The example that follows assumes that EPICS base has already been
built.

2.2 Example | OC Application

This section explains how to create an example 10C application in a directory <top>, naming the application
nmyexanpl eApp and theioc directory i ocnyexanpl e.

2.2.1 Check that EpI cs HOST ARCH s defined

Execute the command:

echo $EPI CS_HOST_ARCH (Uni x/ 1'i nux)
or

set EPI CS_HOST_ARCH (W ndows)

This should display your workstation architecture, for example | i nux- x86 or wi n32- x86. If you get an "Undefined
variable" error, you should set EPICS HOST _ARCH to your host operating system followed by adash and then your host
architecture, e.g. solaris-sparc. The perl script EpicsHostArch.pl in the base/startup directory has been provided to help
set EPICS HOST_ARCH.

2.2.2 Create the example application

The following commands create an example application.

nkdir <top>

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 11

Chapter 2: Getting Started
Example IOC Application

cd <top>
<base>/ bi n/ <ar ch>/ makeBaseApp. pl -t exanpl e nyexanpl e
<base>/ bi n/ <ar ch>/ makeBaseApp. pl -i -t exanple myexanmpl e

Here, <arch> indicates the operating system architecture of your computer. For example, solaris-sparc. The last command
will ask you to enter an architecture for the IOC. It provides alist of architectures for which base has been built.

The full path name to <base> (an aready built copy of EPICS base) must be given. Check with your EPICS system
administrator to see what the path to your <base> is. For example:

/ honme/ phoebus/ MRK/ epi cs/ base/ bi n/ | i nux- x86/ makeBaseApp. pl

Windows Users Note: Perl scripts are invoked with the command perl <scriptname> on win95/NT. Perl script names are
case sensitive. For example to create an application on WIN95/NT:

perl C:\epics\base\bi n\w n32-x86\ makeBaseApp. pl -t exanpl e nyexanpl e

2.2.3 Inspect files

Spend some time looking at the files that appear under <top>. Do this BEFORE building. This allows you to see typical
files which are needed to build an application without seeing the files generated by make.

2.2.4 Sequencer Example

The sequencer is now supported as an unbundled product. The example includes an example state notation program;
sncExample.stt. As created by makeBaseApp the example is not built or executed.

Before sncExample.st can be built, the sequencer must be built using the same version of base that the example uses.
To build sncExample edit the following files:

* configure/RELEASE - Set SNCSEQ to the location of the sequencer.

* iocBoot/iocmyexample/st.cmd - Remove the comment character # from
#seq sncExample,"user=<user"

The Makefile contains commands for building sncExample as a component of the ioc application and as a standalone
application, i.e. an application that does not use an epics database.

2.2.5Build

In directory <top> execute the command
make

NOTE: On systems where GNU make is not the default another command is required, e.g. gnumake, grmeke, etc. See
you EPICS system administrator.

2.2.6 Inspect files

Thistime you will see the files generated by make as well as the original files.

2.2.7 Run theioc example

The example can be run on vxWorks, RTEMS, or on a supported host.

12 EPICS Application Developer’'s Guide 1/5/09

Chapter 2: Getting Started
Channel Access Host Example

* Onahogt, e.g. linux or solarius
e cd <top>/iocBoot/iocnyexanmple
e ../../bin/linux-x86/nmyexanple st.cnd
* vXWOorks/RTERMS - Set your boot parameters as described at the end of this chapter and then boot theioc.

After theioc is started try some of the shell commands (e.g. dbl or dbpr <r ecor dnane>) described in chapter "IOC
Test Facilities'. In particular run dbl to get alist of the records.

Theiocsh command interpreter used on non-vxWorks 10Cs provides a help facility. Just type:

hel p
or
hel p <cnd>
where <cnd> is one of the commands displayed by help. The help command accepts wildcards, so
hel p db*
will provide information on all commands beginning with the characters db.

On vxWorks the help facility is available by first typing:

i ocsh

2.3 Channel Access Host Example

An example host example can be generated by:

cd <mytop>
<base>/ bi n/ <ar ch>/ nakeBaseApp. pl -t cadient caCient
make

(or gnumake, as required by your operating system)
Two channel access examples are provided.

» caExample - This example accepts a pvname, connects and reads the current value for pvname, displays the result
and terminates. To run this examplejust type.
<nyt op>/ bi n/ <host ar ch>/ caExanpl e <pvnane>
where
<nyt op> isthe full path name to your application top directory.
<host ar ch> isyour host architecture.
<pvnane> isone of the record names displayed by the dbl ioc shell command.
» caMonitor - This example accepts afilename, which contains alist of pvnames, each appearing on a separate line.
It connects to each pv and issues monitor requests. It displays messages for all channel access events, connection
events, etc.

2.4 iocsh

Because the vxWorks shell is only available on vxWorks, EPICS base provides iocsh. In the main program it can be
invoked as follows:

i ocsh("fil enane")

or

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 13

Chapter 2: Getting Started
Building IOC components

i ocsh(0)

If the argument is a filename, the commands in the file are executed and iocsh returns. If the argument is O then iocsh goes
into interactive mode, i.e. it prompts for and executes commands until an exit command is issued.

This shell is described in more detail in Chapter 18, “1OC Shell” on page 249

On vxWorks iocsh is not automatically started. It can be started by just giving the following command to the vxWorks
shell.

i ocsh
To get back to the vxWorks shell just say

exit

2.5 Building | OC components

Detailed build rules are given in chapter "Epics Build Facility". This section describes methods for building most
components needed for 10OC applications. It uses excerpts from the myexampleApp/src/Makefile that is generated by
makeBaseA pp.

The following two types of applications can be built:

* Support applications
These are applications meant for use by ioc applications. The rules described here install things into one of the
following directories that are created just below <top>:
* include
C include files are installed here. Either header files supplied by the application or header files generated
from xxxRecord.dbd or xxxMenu.dbd files.
 dbd
Each file contains some combination of i ncl ude, recordtype, devi ce, driver, and
regi strar database definition commands. The following are installed:
» xxxRecord.dbd, xxxMenu.dbd files
» An arbitrary xxx.dbd file
 ioc applicationsinstall afile yyy.dbd generated from file yyylnclude.dbd.
o db
Files containing record instance definitions.
* lib/<arch>
All source modules are compiled and placed in shared or static library (win32 dil)
» |OC applications
These are applications loaded into actual 10Cs.

2.5.1 Binding to |OC components

Because many |OC components are bound only during ioc initialization, some method of linking to the appropriate shared
and/or static libraries must be provided. The method used for I0Cs is to generate, from an xxxInclude.dbd file, a C++
program that forces a reference to the appropriate library modules. The following database definitions keywords are used
for this purpose:

recordtype
devi ce
driver

14 EPICS Application Developer’'s Guide 1/5/09

Chapter 2: Getting Started
Building I0OC components

function
vari abl e
regi strar

The method also requires that 10C components contain an appropriate epicsExport statement. All components must
contain the statement:

#i ncl ude <epi csExport. h>
Any component that defines any exported functions must also contain:
#i ncl ude <regi stryFunction. h>
Each record support module must contain a statement like:
epi csExport Addr ess(rset, xxxXRSET) ;
Each device support module must contain a statement like:
epi csExport Addr ess(dset, devXxxSoft);
Each driver support module must contain a statement like:
epi csExport Addr ess(drvet, dr vXxx) ;

Functions are registered using an epi csRegi st er Funct i on macro in the C source file containing the function, along
with af unct i on statement in the application database description file. The makeBaseApp example thus contains the
following statements to register a pair of functions for use with a subroutine record:

epi csRegi st er Functi on(mySubl nit);
epi csRegi st er Funct i on(nySubPr ocess) ;

The database definition keyword var i abl e forces areference to an integer or double variable, e.g. debugging variables.
The xxxInclude.dbd file can contain definitions like:

vari abl e(asCabDebug, i nt)
vari abl e(myDef aul t Ti meout, doubl e)

The code that defines the variables must include code like:

i nt asCaDebug = O;
epi csExport Addr ess(i nt, asCaDebug) ;

Thekeyword r egi st r ar signifies that the epics component supplies a named registrar function that has the prototype:
typedef void (*REG STRAR) (voi d);

This function normally registers things, as described in Chapter 21, “Registry” on page 315. The makeBaseApp example
provides a sample iocsh command which is registered with the following registrar function:

static void hell oRegister(void) {
i ocshRegi st er (&hel | oFuncDef, hell oCal | Func);
}

epi csExport Regi strar(hel |l oRegi ster);

2.5.2 Makefilerules

2.5.2.1 Building a support application.

xxxRecord.h will be created from xxxRecord. dbd
DBDI NC += xxxRecord
DBD += nyexanpl eSupport. dbd

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 15

Chapter 2: Getting Started
Building IOC components

LI BRARY_I OC += nyexanpl eSupport

nmyexanpl eSupport SRCS += xxxRecord. c
nmyexanpl eSupport _SRCS += devXxxSoft.c
nyexanpl eSupport SRCS += dbSubExanpl e. c

myexanpl eSupport _LIBS += $(EPI CS_BASE | OC LI BS)

The DBDINC rule looks for a file xxxRecord.dbd. From this file a file xxxRecord.h is created and installed into <top>/
include

The DBD rule finds myexampleSupport.dbd in the source directory and installs it into <top>/dbd

The LIBRARY_IOC statement states that a shared/static library should be created and installed into <top>/lib/<arch>.
The myexampleSupport_SRCS statements name all the source files that are compiled and put into the library.

The above statements are all that is needed for building many support applications.

2.5.2.2 Building the 10C application
The following statements build the |OC application:
PROD | CC = myexanpl e

DBD += nyexanpl e. dbd

nmyexanpl e.dbd will be nmade up fromthese files:
nmyexanpl e_DBD += base. dbd

nyexanpl e_DBD += xxxSupport. dbd

nyexanpl e_DBD += dbSubExanpl e. dbd

<nane>_regi st er RecordDevi ceDriver.cpp will be created from <nanme>. dbd
nmyexanpl e_SRCS += nyexanpl e_r egi st er Recor dDevi ceDri ver. cpp

nyexanpl e_SRCS _DEFAULT += nyexanpl eMai n. cpp

nmyexanpl e_SRCS vxWorks += -nil -

Add locally conpiled object code
nyexanpl e_SRCS += dbSubExanpl e. c

#The fol |l owi ng adds support from base/src/vxWrks
nyexanpl e_OBJS_vxWirks += $(EPI CS_BASE BI N)/ vxConlLi brary

nyexanpl e_LI BS += nmyexanpl eSupport
nyexanpl e_LI BS += $(EPI CS_BASE_| OC_LI BS)

PROD_IOC gives that name of the ioc application, which is named myexanpl e.

The DBD definition myexampledbd will cause build rules to create the database definition include file
myexamplelnclude.dbd from files in the myexample DBD definition. For each filename in the myexample DBD
definition, the created myexamplelnclude.dbd will contain an include statement for that filename. The created
myexamplel nclude.dbd file will contain the following lines.

i ncl ude "base. dbd"
i ncl ude "xxxSupport. dbd"
i ncl ude "dbSubExanpl e. dbd"

16 EPICS Application Developer’'s Guide 1/5/09

Chapter 2: Getting Started
makeBaseApp

When the DBD build rules find the created file nyexanpl el ncl ude. dbd, the rules then call dbExpand which reads
nmyexanpl el ncl ude. dbd to generatefile nyexanpl e. dbd, and install it into <t op>/ dbd.

An arbitrary number of myexanpl e_SRCS statements can be given. One,
nmyexanpl e_r egi st er Recor dDevi ceDri ver. cpp, isspecia. When thisis seen the following happens:

» A perl scriptr egi st er Recor dDevi ceDri ver. pl isexecuted. Taking myexample.dbd as input it generates
myexanpl e_r egi st er Recor dDevi ceDri ver. cpp.

2.6 makeBaseApp

makeBaseApp isa perl script that creates application areas. It can create the following:

» <top>/Makefile

* <top>/configure - This directory contains the files needed by the EPICS build system.

o <top>/xXxxApp - A set of directories and associated filesfor a major sub-module.

* <top>/iocBoot - A subdirectory and associated files.

» <top>/iocBoot/iocxxx - A subdirectory and filesfor asingleioc.
makeBaseApp creates directories and then copies template files into the newly created directories while expanding
macros in the template files. EPICS base provides two sets of template files: simple and example. These are meant for
simple applications. Each site, however, can create its own set of template files which may provide additional

functionality. This section describes the functionality of makeBaseApp itself, the next section provides details about the
simple and example templ ates.

2.6.1 Usage

makeBaseA pp has four possible forms of command line:
<base>/ bi n/ <ar ch>/ nakeBaseApp. pl -h

Provides help.
<base>/ bi n/ <ar ch>/ makeBaseApp. pl -1 [options]

List the application templates available. Thisinvocation does not alter the current directory.
<base>/ bi n/ <ar ch>/ nakeBaseApp. pl [-t type] [options] app ...
Create application directories.
<base>/ bi n/ <ar ch>/ nakeBaseApp.pl -i -t type [options] ioc ...
Create ioc boot directories.

Optionsfor al command forms:

-b base
Provides the full path to EPICS base. If not specified, the value is taken from the EPICS_BASE entry in config/
RELEASE. If the config directory does not exist, the path is taken from the command-line that was used to invoke
makeBaseApp

-T tenpl ate
Set the template top directory (where the application templates are). If not specified, the template path is taken
from the TEMPLATE_TOP entry in config/RELEASE. If the config directory does not exist the path is taken from
the environment variable EPICS MBA_TEMPLATE_TORP, or if thisis not set the templates from EPICS base are
used.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 17

Chapter 2: Getting Started
makeBaseApp

-d
Verbose output (useful for debugging)

Arguments uniqueto makeBaseApp. pl [-t type] [options] app ...:

app
One or more application names (the created directories will have " App" appended to this name)

-t type
Set the template type (use the -1 invocation to get alist of valid types). If this option is not used, type is taken from
the environment variable EPICS MBA_DEF _APP_TYPE, or if that is not set the values "default” and then
"example " aretried.

Arguments uniqueto makeBaseApp. pl -i [options] ioc ...:
i oc
One or more IOC names (the created directories will have "ioc " prepended to this name).

-a arch
Set the I0C architecture (e.g. vxWorks-68040). If -a ar ch isnot specified, you will be prompted.

2.6.2 Environment Variables:

EPI CS_MBA DEF_APP_TYPE

Application type you want to use as default
EPI CS_MBA TEMPLATE_TOP

Template top directory

2.6.3 Description

To create a new <top> issue the commands:

nkdir <top>

cd <top>

<base>/ bi n/ <ar ch>/ makeBaseApp. pl -t <type> <app> ..
<base>/ bi n/ <ar ch>/ makeBaseApp. pl -i -t <type> <ioc> ..

makeBaseA pp does the following:

» EPICS BASE islocated by checking the following in order:
* If the-b option is specified it is used.
« If a<t op>/ conf i g/ RELEASE file exists and defines avalue for EPI CS_BASE it is used.

e It is obtained from the invocation of makeBaseApp. For this to work, the full path name to the
makeBaseA pp.pl script in the EPICS base release you are using must be given.

TEMPLATE_TOP islocated in asimilar fashion:
« If the-T option is specified it is used.
« If a<t op>/ conf i g/ RELEASE file exists and defines avalue for TEMPLATE_TOP it is used.
« If EPICS MBA_TEMPLATE_TOP isdefined it is used.
 Itisset equal to<epi cs_base>/t enpl at es/ nakeBaseApp/ t op
« If -l is specified the list of application typesis listed and makeBaseApp terminates.
If -i is specified and -aiis not then the user is prompted for the |OC architecture.
e The application type is determined by checking the following in order:
o If -tisspecified it is used.
« If EPICS MBA_DEF_APP_TYPE isdefined it is used.

18 EPICS Application Developer’'s Guide 1/5/09

Chapter 2: Getting Started
makeBaseApp

 If atemplate def aul t App exists, the application typeis set equal to default.
 If atemplate exanpl eApp exists, the application typeis set equal to example.
If the application typeis not found in TEMPLATE_TOPR, makeBaseApp issues an error and terminates.
* If Makefile does not exist, it is created.
If directory conf i gur e doesnot exigt, it is created and populated with all the conf i gur e files.
If -i is specified:
« If directory i ocBoot does not exist, it is created and the files from the template boot directory are copied
into it.
» For each <i oc> specified on the command line a directory iocBoot/ioc<ioc> is created and populated with
the files from the template (with Replacel ine() tag replacement, see below).
If -i isNOT specified:
 For each <app> specified on the command line a directory <app>App is created and populated with the
directory tree from the template (with Replaceline() tag replacement, see below).

2.6.4 Tag Replacement within a Template

When copying certain files from the template to the new application structure, makeBaseA pp replaces some predefined
tags in the name or text of the files concerned with values that are known at the time. An application template can extend
this functionality asfollows:

» Two perl subroutines are defined within makeBaseA pp:
» ReplaceFilename - This substitutes for the following in names of any file taken from the templ ates.

+ _APPNAME_
 APPTYPE_
* ReplaceLine - This substitutes for the following in each line of each file taken from the templates:
+ _USER_
 EPICS BASE
* ARCH_
+ _APPNAME_
» _APPTYPE_
» TEMPLATE_TOP_
« _10C_

« If the application type directory has afile named Repl ace. pl ,itcan:
» Replace one or both of the above subroutines with its own versions.
» Addasubroutine Repl aceFi | enanmeHook($f i | e) whichiscalled at theend of Repl aceFi | enane.
» Add asubroutine Repl aceLi neHook($! i ne) whichiscalled at the end of Repl aceli ne.
* Include other code which is run after the command line options are interpreted.

2.6.5 makeBaseApp templetes provided with base

2.6.5.1 support
This creates files appropriate for building a support application.

2.6.5.2ioc

Without the -i option, this creates files appropriate for building an ioc application, With the -i option it creates an ioc boot
directory.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 19

Chapter 2: Getting Started
vxXWorks boot parameters

2.6.5.3 example

Without the -i option it creates files for running an example. Both a support and an ioc application are built. With the -i
option it creates an ioc boot directory that can be used to run the example.

2.6.5.4 caClient

This builds two Channel Access clients.

2.6.5.5 caServer

This builds an example Portable Access Server.

2.7 vx\Works boot parameters

The vxWorks boot parameters are set via the console serial port on your |OC. Life is much easier if you find out how to
connect the serial port to awindow on your workstation.

The vxWorks boot parameters look something like the following:

boot device DOXXX

processor numrber 0

host nane DOXXX

file name : <full path to board support>/vxWrks
i net on ethernet (e) DOXXX. XXX, XXX. XXX: <net mask>

host inet (h) DOXXX. XXX, XXX, XXX

user (u) DOXXX

ftp password (pw) DOXXX

flags (f) A 0) (0]

target nane (tn) : <hostnane for this inet address>
startup script (s) . <top>/iocBoot/iocmyexanpl e/st.cnd

The actual values for each field are site and 10C dependent. Two fields that you can change at will are the vxWorks boot
image and the location of the startup script.

Note that the full path name for the correct board support boot image must be specified. If bootp is used the same
information will need to be placed in the bootp host’s configuration database instead.

When your boot parameters are set properly, just press the reset button on your 10C, or use the @ command to commence
booting. You will find it VERY convenient to have the console port of the I0C attached to a scrolling window on your
workstation.

2.8 RTEMS boot procedure

RTEMS uses the vendor-supplied bootstrap mechanism so the method for booting an |OC depends upon the hardware in
use.

20 EPICS Application Developer’'s Guide 1/5/09

Chapter 2: Getting Started
RTEMS boot procedure

2.8.1 Booting from a BOOTP/DHCP/TFTP server

Many boards can use BOOTP/DHCP to read their network configuration and then use TFTP to read the applicaion
program. RTEMS can then use TFTP or NFSto read startup scripts and configuration files. If you are using TFTP to read
the startup scripts and configuration files you must install the EPICS application files on your TFTP server asfollows:

 Copy dl db/xxx files to <tftpbase>/epics/<target_hostname>/db/xxx.
» Copy al dbd/xxx files to <tftpbase>/epics/<target hostname>/dbd/xxx.
» Copy the st.cmd script to <tftpbase>/epicg/<target_hostname>/st.cmd.

Use DHCP site-specific option 129 to specify the path to the |OC startup script.

2.8.2 Motorola PPCBUG boot parameters

Motrola single-board computers which employ PPCBUG should have their ‘NIOT’ parameters set up like:
Control l er LUN =00

Devi ce LUN =00

Node Control Menory Address =FFE10000

Client |IP Address ='Dotted-decimal’ IP address of IOC

Server | P Address ='Dotted-decimal’ IP address of TFTP/NFS server

Subnet | P Address Mask ='Dotted-decimal’ |P address of subnet mask (255.255.255.0 for class C subnet)
Broadcast | P Address ='Dotted-decimal’ |P address of subnet broadcast address

Gat eway | P Address ='Dotted-decimal’ |P address of network gateway (0.0.0.0 if none)

Boot File Nane =Path to application bootable image (..../bin/fRTEM S-mvme2100/test.boot)
Argurment File Nane =Path to application startup script (..../iocBoot/ioctest/st.cmd)

Boot File Load Address =001F0000 (actual value depends on BSP)

Boot File Execution Address =001F0000 (actual value depends on BSP)

Boot File Execution Del ay =00000000

Boot File Length =00000000

Boot File Byte O f set =00000000

BOOTP/ RARP Request Retry =00

TFTP/ ARP Request Retry =00

Trace Character Buffer Address =00000000

2.8.3 MotorolaMOTL OAD boot parameters

Motrola single-board computers which employ MOTLOAD should have their network ‘Globa Environment Variabl€e’
parameters set up like:

not - / dev/ enet 0- ci pa=‘Dotted-decimal’ IP address of IOC

not - / dev/ enet 0- si pa='Dotted-decimal’ |P address of TFTP/NFS server

not - / dev/ enet 0- snma="'Dotted-decimal’ |P address of subnet mask (255.255.255.0 for class C subnet)
not - / dev/ enet 0- gi pa='Dotted-decimal’ |P address of network gateway (omit if none)

not - / dev/ enet O- f i | e=Path to application bootable image (..../bin/fRTEM S-mvme5500/test.boot)
rtens-client-nane=10C name (not - / dev/ enet 0- ci pa will be used if this parameter is missing)
rt ens- dns- ser ver ='Dotted-decimal’ |P address of domain name server (omit if none)

rt ens- dns- domai nnane=Domain name (if this parameter is omitted the compiled-in value will be used)
epi cs- scri pt =Path to application startup script (..../iocBoot/ioctest/st.cmd)

Thenot - scri pt - boot parameter should be set up like:

tftpGet -a4000000 -cxxx - SXXX - NKxX - gxxx -d/ dev/enetO -f../bin/fRTEMS-mvme5500/test.boot
net Shut

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 21

Chapter 2: Getting Started
RTEMS boot procedure

go -a4000000

where the -, -s, -m and -g values should match the cipa, sipa, snma and gipa values, respectively and the -f value should
match the file value.

2.8.4 RTEMS NFS access

For 10Cs which use NFS for remote file access the EPICS initialization code uses the startup script pathname to
determine the parameters for the initial NFS mount. |f the startup script pathname beginswith a‘/ ’ the first component
of the pathname is used as both the server path and the local mount point. If the startup script pathname does not begin
with a‘/’ the first component of the pathname is used as the local mount point and the server pathis*‘/ t f t pboot / ”
followed by the first component of the pathname. This allows the NFS client used for EPICS file access and the TFTP
client used for bootstrapping the application to have asimilar view of the remote filesystem.

285 RTEMS Cexp’

The RTEMS ‘' Cexp’ add-on package provides the ability to load object modules at application run-time. If your RTEMS
build includes this package you can load RTEM S |OC applications in the same fashion as vxWorks |OC applications.

22 EPICS Application Developer’'s Guide 1/5/09

Chapter 3: EPICS Overview

3.1 What isEPICS?

EPICS consists of a set of software components and tools that Application Devel opers use to create a control system. The

basic components are:

» OPI: Operator Interface. Thisis aworkstation which can run various EPICS tools.

* |OC: Input/Output Controller. Any platform that can support EPICS run time databases together with the other
software components described in the manual. One example is a workstation. Another example is a VME/VXI

based system using vxWorks or RTEM S as the realtime operating system.

e LAN: Loca AreaNetwork. Thisisthe communication network which allows the IOCs and OPIs to communicate.
EPICS provides a software component, Channel Access, which provides network transparent communication

between a Channel Access client and an arbitrary number of Channel Access servers.

A control system implemented via EPICS has the following physical structure.

OPI

OPI

OPI

I0C

Therest of this chapter gives a brief description of EPICS:

» Basic Attributes: A few basic attributes of EPICS.

I0C

LAN

 Platforms: The vendor supplied Hardware and Software platforms EPICS supports.

3.2 Basic Attributes

The basic attributes of EPICS are:

10C Software: EPICS supplied 10C software components.

» Channel Access. EPICS software that supports network independent access to |0C databases.
OPI Tools. EPICS supplied OPI based tools.
EPICS Core: A list of the EPICS core software, i.e. the software components without which EPICS will not work.

EPICS Release 3.14.10

EPICS Application Developer’'s Guide

Chapter 3: EPICS Overview
Hardware - Software Platforms (Vendor Supplied)

Tool Based: EPICS provides a number of tools for creating a control system. This minimizes the need for custom
coding and helps ensure uniform operator interfaces.

Distributed: An arbitrary number of IOCs and OPIs can be supported. Aslong as the network is not saturated, no
single bottle neck is present. A distributed system scales nicely. If asingle |OC becomes saturated, its functions can
be spread over several 10Cs. Rather than running all applications on a single host, the applications can be spread
over many OPIs.

Event Driven: The EPICS software components are all designed to be event driven to the maximum extent
possible. For example, rather than having to poll 10Cs for changes, a Channel Access client can request that it be
notified when a change occurs. This design leads to efficient use of resources, as well as, quick response times.
High Performance: A SPARC based workstation can handle several thousand screen updates a second with each
update resulting from a Channel Access event. A 68040 IOC can process more than 6,000 records per second,
including generation of Channel Access events.

3.3 Hardware - Software Platforms (Vendor Supplied)

EPICS core components (including IOC components) run on a wide range of systems. Currently this includes the
following platforms, but new operating system platforms can be easily supported if they have reasonable support for
sockets and threads. Currently most 32 bit processors are supported. Some limited testing has been performed on 64 bit
processors.

3.3.1 0PI

Platforms

Unix based Workstations: Well supported platformsinclude SOLARIS, and HP-UX
Linux

Darwin, i.e. Mac OS 10

Windows NT

Limited support for VMS

3.3.2LAN
Hardware

Ethernet (most flavors)

Software

TCP/IP protocols via sockets

3.3.310C
Hardware

VME/VXI bus and crates
e Various VME modules (ADCs, DAC, Binary |/O, etc.)
 Allen Bradley Scanner (Most AB 1/0 modules)
» GPIB devices

24

EPICS Application Developer’'s Guide 1/5/09

Chapter 3: EPICS Overview
I0C Software Components

« BITBUS devices
« CAMAC
« CANBUS
Motorola 68K
* Intel
AMD Athelon
* PowerPC
* Sun Sparc
« HP

Software

» vxWorks operating system
* Real time kernel
« Extensive “Unix like’ libraries
RTEMS
e Linux
* Unix
e Darwin
e Win32

3.4 10C Software Components

An 1OC contains the following EPICS supplied software components.

Ethernet
Channel Sequencer
Access
— Monitors
Database
Scanners Access I0C Database
Driver or Record Support
Device
Interrupt
Routines

Device Support

Device
Drivers

VME

» |OC Database: The memory resident database plus associated data structures.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 25

Chapter 3: EPICS Overview
I0C Software Components

» Database Access: Database access routines. With the exception of record and device support, all access to the
database is via the database access routines.

» Scanners. The mechanism for deciding when records should be processed.

» Record Support: Each record type has an associated set of record support routines.

* Device Support: Each record type can have one or more sets of device support routines.

» DeviceDrivers: Device drivers access external devices. A driver may have an associated driver interrupt routine.

» Channel Access. The interface between the external world and the IOC. It provides a network independent
interface to database access.

* Monitors. Database monitors are invoked when database field values change.

» Sequencer: A finite state machine.

Let’s briefly describe the major components of the |OC and how they interact.

3.4.110C Database

The heart of each 10C is a memory resident database together with various memory resident structures describing the
contents of the database. EPICS supports a large and extensible set of record types, e.g. ai (Anaog Input), ao (Analog
Output), etc.

Each record type has a fixed set of fields. Some fields are common to al record types and others are specific to particular
record types. Every record has a record name and every field has a field name. The first field of every database record
holds the record name, which must be unique across all |OCs that are attached to the same TCF/IP subnet.

Data structures are provided so that the database can be accessed efficiently. Most software components, because they
access the database via database access routines, do not need to be aware of these structures.

3.4.2 Database Access

With the exception of record and device support, al access to the database is via the channel or database access routines.
See Chapter 15, “Runtime Database Access’ on page 213 for details.

3.4.3 Database Scanning

Database scanning is the mechanism for deciding when to process a record. Five types of scanning are possible: Periodic,
Event, 1/0 Event, Passive and Scan Once.

» Periodic: A request can be made to process arecord periodically. A number of time intervals are supported.

» Event: Event scanning is based on the posting of an event by any |OC software component. The actual subroutine
cal is.

post _event (event _num

* 1/O Event: The I/O event scanning system processes records based on external interrupts. An 10C device driver
interrupt routine must be available to accept the external interrupts.

» Passive: Passive records are processed as a result of linked records being processed or as a result of external
changes such as Channel Access puts.

» Scan Once: In order to provide for caching puts, The scanning system provides a routine scanOnce which
arranges for arecord to be processed one time.

26 EPICS Application Developer’'s Guide 1/5/09

Chapter 3: EPICS Overview
Channel Access

3.4.4 Record Support, Device Support and Device Drivers

Database access needs no record-type specific knowledge, because each record-type has its associated record support
module. Therefore, database access can support any number and type of records. Similarly, record support contains no
device specific knowledge, giving each record type the ability to have any number of independent device support
modules. If the method of accessing the piece of hardware is more complicated than what can be handled by device
support, then adevice driver can be devel oped.

Record types not associated with hardware do not have device support or device drivers.

The 10C software is designed so that the database access layer knows nothing about the record support layer other than
how to call it. The record support layer in turn knows nothing about its device support layer other than how to call it.
Similarly the only thing a device support layer knows about its associated driver is how to call it. This design alows a
particular installation and even a particular IOC within an installation to choose a unique set of record types, device types,
and drivers. The remainder of the |OC system software is unaffected.

Because an Application Developer can develop record support, device support, and device drivers, these topics are
discussed in greater detail in later chapters.

Every record support module must provide a record processing routine to be called by the database scanners. Record
processing consists of some combination of the following functions (particular records types may not need all functions):

e Input: Read inputs. Inputs can be obtained, via device support routines, from hardware, from other database
records via database links, or from other |OCs via Channel Access links.

» Conversion: Conversion of raw input to engineering units or engineering units to raw output val ues.

» Output: Write outputs. Output can be directed, via device support routines, to hardware, to other database records
viadatabase links, or to other IOCs via Channel Access links.

» Raise Alarms; Check for and raise alarms.
» Monitor: Trigger monitors related to Channel Access callbacks.
» Link: Trigger processing of linked records.

3.4.5 Channel Access

Channél Accessis discussed in the next section.

3.4.6 Database Monitors

Database monitors provide a callback mechanism for database value changes. This allows the caller to be notified when
database values change without constantly polling the database. A mask can be set to specify value changes, alarm
changes, and/or archival changes.

At the present time only Channel Access uses database monitors. No other software should use the database monitors.
The monitor routines will not be described because they are of interest only to Channel Access.

3.5 Channdl Access

Channel Access provides network transparent access to 10C databases. It is based on a client/ server model. Each 10C
provides a Channel Access server which is willing to establish communication with an arbitrary number of clients.
Channel Access client services are available on both OPIsand 10Cs. A client can communicate with an arbitrary number
of servers.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 27

Chapter 3: EPICS Overview
Channel Access

3.5.1 Client Services

The basic Channel Access client services are;

» Search: Locatethe IOCs containing selected process variables and establish communication with each one.
» Get: Get value plus additional optional information for a selected set of process variables.
» Put: Change the values of selected process variables.

« Add Event: Add a change of state callback. This is a request to have the server send information only when the
associated process variable changes state. Any combination of the following state changes can be requested:
change of value, change of alarm status and/or severity, and change of archival value. Many record types provide
hysteresis factors for value changes.

In addition to requesting process variable values, any combination of the following additional information may be
requested:

o Status: Alarm status and severity.

» Units: Engineering units for this process variable.

» Precision: Precision with which to display floating point numbers.

e Time: Time when the record was last processed.

* Enumerated: A set of ASCII strings defining the meaning of enumerated values.

» Graphics: High and low limits for producing graphs.

e Control: Highand low control limits.

e Alarm: TheadarmH H , H GH, LOWVand LOLOvalues for the process variable.

It should be noted that Channel Access does not provide access to database records as records. Thisis a deliberate design
decision. This allows new record types to be added without impacting any software that accesses the database via Channel
Access, and it allows a Channel Access client to communicate with multiple 10Cs having differing sets of record types.

3.5.2 Search Server

Channel Access provides an 10C resident server which waits for Channel Access search messages. These are generated
when a Channel Access client (for example when an Operator Interface task starts) searches for the IOCs containing
process variables the client uses. This server accepts all search messages, checksto see if any of the process variables are
located in this1OC, and, if any are found, replies to the sender with and “I have it” message.

3.5.3 Connection Request Server

Once the process variables have been located, the Channel Access client issues connection requests for each 10C
containing process variables the client uses. The connection request server, in the |OC, accepts the request and establishes
a connection to the client. Each connection is managed by two separate tasks: ca_get and ca_put . Theca_get and
ca_put requests map to dbCet Fi el d and dbPut Fi el d database access requests. ca_add_event requestsresult in
database monitors being established. Database access and/or record support routines trigger the monitors via a call to
db_post _event.

3.5.4 Connection M anagement

Each 10C provides a connection management service. When a Channel Access server fails (e.g. its IOC crashes) the
client is notified and when a client fails (e.g. its task crashes) the server is notified. When a client fails, the server breaks
the connection. When a server crashes, the client automatically re-establishes communication when the server restarts.

28 EPICS Application Developer’'s Guide 1/5/09

Chapter 3: EPICS Overview
OPI Tools

3.6 OPI Tools

EPICS provides a number of OPI based tools. These can be divided into two groups based on whether or not they use
Channel Access. Channel Accesstoolsarereal timetools, i.e. they are used to monitor and control 10Cs.

3.6.1 Examples of channel Access Tools

A large number of Channel Access tools have been devel oped. The following are some representative examples.

EDM - Extensible Display Manager. The newest display manager/editor for EPICS.
MEDM: Motif version of combined display manager and display editor.

DM: Display Manager. Reads one or more display list files created by EDD, establishes communication with all
necessary 10Cs, establishes monitors on process variables, accepts operator control requests, and updates the
display to reflect all changes.

stripTool - General purpose stripchart tool.

ALH: Alarm Handler. General purpose alarm handler driven by an alarm configuration file.
AR: Archiver. General purpose tool to acquire and save data from 10Cs.

Sequencer: Runsinan 10C and emulates a finite state machine.

BURT: Backup and Restore Tool. General purpose tool to save and restore Channel Access channels. Thetool can
be run via Unix commands or viaa Graphical User Interface.

KM: Knob Manager - Channel Access interface for the sun dials (a set of 8 knobs)

PROBE: Allows the user to monitor and/or change a single process variable specified at run time.
CAMATH: Channel Accessinterface for Mathematica

CAWINGZ: Channel Accessinterface for Wingz.

IDL/PVWAVE Channel Access Interfaces exist for these products.

TCL/TK Channel Access Interface for these products.

CDEV - A library designed to provide a standard API to one or more underlying packages, typically control
system interfaces. CDEV provides a Channel Access service.

3.6.2 Examples of other OPI Tools

VDCT - A Java based database configuration tool which is quickly becoming the recommended database
configuration tool.

JDCT: Java Database Configuration Tool. A JAVA based tool for creating run time databases.

GDCT: Graphical Database Configuration Tool. Used to create a run time database for an IOC. Thisis no longer
being developed since it is based on an open source software system called unidraw, which is no longer being
supported.

EDD: Display Editor. This tool is used to create a display list file for the Display Manager. A display list file
contains alist of static, monitor, and control elements. Each monitor and control element has an associated process
variable.

SNC: State Notation Compiler. It generates a C program that represents the states for the |OC Sequencer tool.
Database Tools - Tools are provided which generate C include files from menu and record type database definition
files.

Source/Release; EPICS provides a Source/Rel ease mechanism for managing EPICS.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 29

Chapter 3: EPICS Overview
EPICS Core Software

3.7 EPICS Core Software

EPICS consists of a set of core software and a set of optional components. The core software, i.e. the components of
EPICS without which EPICS would not function, are:

» Channel Access - Client and Server software
10C Database

e Scanners

» Monitors

« Database Definition Tools

» Source/Release

All other software components are optional. Of course, any application developer would be crazy to ignore tools such as
MEDM (or EDD/DM). Likewise an application developer would not start from scratch developing record and device
support. Most OPI tools do not, however, have to be used. Likewise any given record support module, device support
module, or driver could be deleted from a particular IOC and EPICS will still function.

30 EPICS Application Developer’'s Guide 1/5/09

Chapter 4. EPICS Build Facility

Janet Anderson is the author of this chapter.

4.1 Overview

This chapter describes the EPICS build facility including directory structure, environment and system requirements,
configuration files, Makefiles, and related build tools.

4.1.1 <top> Directory structure

EPICS software can be divided into multiple <top> areas. Examples of <top> areas are EPICS base itself, EPICS
extensions, and simple or complicated 10C applications. Each <top> may be maintained separately. Different <top> areas
can be on different releases of external software such as EPICS base rel eases.

A <top> directory has the following directory structure;

<t op>/
Makefil e
confi gure/
dirl/
dir2/

where configure is a directory containing build configuration files and a M akefile and where dirl, dir2, ... are user created
subdirectory trees with Makefiles and source files to be built. Because the build rules allow make commands like "make
install.vxWorks-68040", subdirectory names within a <top> directory structure may not contain a period"." character.

4.1.2 Install Directories

Filesinstalled during the build are installed into subdirectories of an installation directory which defaults to $(TOP), the
<top> directory. For base, extensions, and ioc applications, the default value can be changed in the configure/
CONFIG_SITE file. The installation directory for the EPICS componentsis:

* INSTALL_LOCATION

The following subdirectories may exist in the installation directory. They are created by the build and contain the installed
build components.

 dbd - Directory into which Database Definition files are installed.

* include - The directory into which C header files are installed. These header files may be generated from menu and
record type definitions.

« bin - Thisdirectory contains asubdirectory for each host architecture and for each target architecture. These are the
directories into which executables, binaries, etc. are installed.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 31

Chapter 4: EPICS Build Facility
Overview

« lib - Thisdirectory contains a subdirectory for each host architecture. These are the directories into which libraries
areinstalled.

» db - Thisisthedirectory into which database record instance, template, and substitution files are installed.

» html - Thisisthedirectory into which html documentation isinstalled.

 templates - Thisisthe directory into which template files are installed.

* javalib - Thisisthe directory into which javaclassfilesand jar files are installed.

« configure- The directory into which configure filesare installed (if INSTALL_LOCATION not equal TOP).
« cfg - Thedirectory into which user created configure files are installed

4.1.3 Elements of build system

The main ingredients of the build system are;

A set of configuration files and tools provided in the EPICS base/configure directory

A corresponding set of configuration files in the <top>/configure directory of a non-base <top> directory structure
to be built. The makeBaseApp.pl and makeBaseExt.pl scripts create these configuration files. Many of these files
just include afile of the same name from the base/configure directory.

» Makefilesin each directory of the <top> directory structure to be built
 User created configuration filesin build created $(INSTALL_L OCATION)/cfg directories.

4.1.4 Features

The principal features of the build system are:

* Requires asingle Makefile in each directory of a <top> directory structure

* Supports both host os vendor’s native compiler and GNU compiler

* Supports building multiple types of software (libraries, executables, databases, java class files, etc.) stored in a
single directory tree.

* Supports building EPICS base, extensions, and 10C applications.

* Supports multiple host and target operating system - architecture combinations.

» Allows builds for all hosts and targets within a single <top> source directory tree.

* Allows sharing of components such as special record/device/drivers across <top> areas.

» gnumake is the only command used to build a <top> area.

4.1.5 Multiple host and tar get systems

You can build on multiple host systems and for multiple cross target systems using a single EPICS directory structure.
The intermediate and binary files generated by the build will be created in separate O.* subdirectories and installed into
the appropriate separate host or target install directories. EPICS executables and scripts are installed into the
S(INSTALL_LOCATION)/bin/<arch> directories. Libraries are installed into $(INSTALL_L OCATION)/lib/<arch>. The
default definition for $(INSTALL_LOCATION) is $(TOP) which is the root directory in the directory structure.
Architecture dependant created files (e.g. object files) are stored in O.<arch> source subdirectories, and architecture
independent created files are stored in O.Common source subdirectories. This allows objects for multiple cross target
architectures to be maintained at the same time.

To build EPICS base for a specific host/target combination you must have the proper host/target c/c++ cross compiler and
target header files, CROSS COMPILER_HOST_ARCHS must empty or include the host architecture in itslist value, the
CROSS COMPILER_TARGET_ARCHS variable must include the target to be cross-compiled, and the base/configure/
os directory must have the appropriate configure files.

32 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Build Requirements

4.2 Build Requirements

4.2.1 Host Environment Variable

Only one environment variable, EPI CS_HOST_ARCH, is required to build EPICS <top> areas. This variable should be
set to be your workstation's operating system - architecture combination to use the os vendor’s c¢/c++ compiler for native
builds or set to the operating system - architecture - alternate compiler combination to use an alternate compiler for native
builds if an aternate compiler is supported on your system. The filenames of the CONFI G *. Comrmon files in base/
configure/os show the currently supported EPICS HOST _ARCH vaues. Examples are sol ari s-sparc,
sol ari s-sparc-gnu, |inux-x86, w n32-x86, and cygw n-x86.

4.2.2 Software Prerequisites

Before you can build EPICS components your host system must have the following software installed:

* Perl version 5.8 or greater
* GNU make, version 3.81 or greater
» C++ compiler (host operating system vendor's compiler or GNU compiler)

If you will be building EPICS components for vxWorks targets you will also need:

 Tornado Il and one or more board support packages. Consult the vxWorks documentation for details.
If you will be building EPICS components for RTEM S targets you will also need:

» RTEMS development tools and libraries required to run EPICS 10C applications.

4.2.3 Path requirements

You must have the perl executable in your path and you may need C and C++ compilers in your search path. Check
definitions of CC and CCC in base/configure/oy CONFIG.<host>.<host> or the definitions for GCC and G++ if
ANSI=GCC and CPLUSPLUS=GCC are specified in CONFIG_SITE. For building base you also must have echo in your
search path. You can override the default settings by defining PERL, CC and CCC, GCC and G++, GNU_DIR ... in the
appropriate file (usually configure/ossCONFIG_SITE.$EPICS_HOST_ARCH.Common)

4.2.3.1 Unix path

For Unix host builds you also need touch, cpp, cp, rm, mv, and mkdir in your search path and /bin/chmod must exist. On
some Unix systems you may also need ar and ranlib in your path, and the ¢ compiler may requireld in your path.

4.2.3.2Win32 PATH

On WIN32 systems, building shared libraries is the default setting and you will need to add fullpathname to
$(INSTALL_LOCATION)/bin/$(EPICS_HOST_ARCH) to your path so the shared libraries, dlls, can be found during
the build.. Building shared librariesis determined by the value of the macro SHARED LIBRARIESin CONFIG_SITE or
0s/CONFIG.Common.<host> (either YES or NO).

4.2.4 Directory names

Because the build rules allow make commands like "make <dir>.<action>,<arch>", subdirectory names within a <top>
directory structure may not contain a period"." character.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 33

Chapter 4: EPICS Build Facility
Configuration Definitions

425EPICS HOST_ARCH environment variable

The startup directory in EPICS base contains a perl script, Epi csHost Arch. pl , which can be used to define
EPICS HOST_ARCH. This script can be invoked with a command line parameter defining the alternate compiler (e.g. if
invoking "Epi csHost Ar ch. pl " yields solaris-sparc, then invoking "Epi csHost Ar ch. pl gnu" will yield solaris-
sparc-gnu).

The startup directory also contains scripts to help users set the path and other environment variables

4.3 Configuration Definitions

4.3.1 Site-specific EPICS Base Configuration

4.3.1.1 Site configuration

To configure EPICS base for your site, you may want to modify the default definitions in the following files:

configure/ CONFIG_SITE Build choices. Specify target archs.
configure/ CONFIG_SITE_ENV Environment variable defaults

4.3.1.2 Host configuration

To configure each host system for your site, you may override the default definitions in the configure/os directory by
adding a new file with override definitions. The new file should have the same name as the distribution file to be
overridden except CONFIG in the name is changed to CONFIG_SITE.

configure/os/CONFIG_SITE.<host>.<host> - Host build settings
configure/osyCONFIG_SITE.<host>.Common - Host build settings for all target systems

4.3.1.3 Target configuration

To configure each target system, you may override the default definitions in the configure/os directory by adding a new
file with override definitions. The new file should have the same name as the distribution file to be overridden except
CONFIG inthe nameisreplaced by CONFIG_SITE.

configure/oyCONFIG_SITE.Common.<target> - Target cross settings
configure/oyCONFIG_SITE.<host>.<target> - Host-target settings
configure/oyCONFIG_SITE.Common.vxWorksCommon - vxWorks full paths

4.3.1.4 R3.13 compatibility configuration

To configure EPICS base for building with R3.13 extensions and ioc applications, you must modify the default definitions
in the base/config/ CONFIG_SITE* files to agree with site definitions you made in base/configure and base/configure/os
files.You must also modify the following tow macros in the base/configure/ CONFIG_SITE file:

COMPAT_TOOLS 313 - Set to YESto build R3.13 extensions with this base.
COMPAT_313 - Set to YESto build R3.13 ioc applications and extensions with this base.

34 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Configuration Definitions

4.3.2 Directory definitions

The configure files contain definitions for locations in which to install various components. These are al relative to
| NSTALL_LOCATI ON. The default value for | NSTALL_LOCATI ONis$(TOP), and $(T_A) is the current build's target
architecture. The default value for INSTALL_LOCATION can be overridden in the configure/CONFIG_SITE file.

| NSTALL_LOCATI ON_LI B = $(I NSTALL_LOCATION) /I i b
| NSTALL_LOCATI ON_BI N = $(1 NSTALL_LOCATI ON) / bi n
| NSTALL_HOST_BI N
| NSTALL_HOST LI B

$(1 NSTALL_LOCATI ON_BI N) / $(EPI CS_HOST_ARCH)
$(1 NSTALL_LOCATI ON_LI B) / $(EPI CS_HOST_ARCH)

| NSTALL_| NCLUDE $(1 NSTALL_LOCATI ON) /i ncl ude

| NSTALL_DCC = $(1 NSTALL_LCOCATI ON) / doc

| NSTALL_HTM = $(I NSTALL_LOCATION)/ htm

| NSTALL_TEMPLATES = $(I NSTALL_LCCATI ON) / t enpl at es
| NSTALL_DBD = $(1 NSTALL_LCOCATI ON) / dbd

| NSTALL_DB = $(| NSTALL_LCOCATI ON) / db

| NSTALL_CONFI G = $(1 NSTALL_LCCATI ON) / confi gure
| NSTALL_JAVA = $(I NSTALL_LCCATION)/javalib

| NSTALL_LI B $(I NSTALL_LOCATI ON_LIB)/ $(T_A)

| NSTALL_SHRLI B
| NSTALL_TCLLI B
| NSTALL_BI' N

$(1 NSTALL_LOCATI ON_LI B)/ $(T_A)
$(1 NSTALL_LOCATI ON_LI B)/ $(T_A)
$(1 NSTALL_LOCATI ON_BI N) / $(T_A)

4.3.3 Extension and Application Specific Configuration

The base/configure directory contains files with the default build definitions and site specific build definitions. The
extensions/configure directory contains extension specific build definitions (e.g. location of X11 and Matif libraries) and
"include <filename>" lines for the base/configure files. Likewise, the <application>/configure directory contains
application specific build definitions and includes for the base/configure files. Build definitions such a
CROSS COMPILER_TARGET_ARCHS can be overridden in an extension or application by placing an override
definition in the <top>/configure/CONFIG_SITE file.

4.3.4 RELEASE file

Every <top>/configure directory contains a RELEASE file. RELEASE contains a user specified list of other <top>
directory structures containing files needed by the current <top>. When make is executed, macro definitions for iinclude,
bin, and library directories are generated for each external <top> definition in the RELEASE file. Also generated are
include statements for any existing RULES BUILD files, cfg/RULES* files, and cfg/CONFIG* files from each external
<top> listed in the REL EASE file.

For example, if configure/REL EASE contains the following definition:
CAMAC = / home/ epi cs/ nodul es/ bus/ camac
then the created macros will be:

CAMAC HOST_BI N = / hone/ epi cs/ nodul es/ bus/ camac/ bi n/ $(EPI CS_HOST_ARCH)
CAMAC HOST_LIB = / homne/ epi cs/ nodul es/ bus/ camac/ | i b/ $(EPI CS_HOST_ARCH
CAMAC BI' N = /hone/ epi cs/ nodul es/ bus/ camac/ bi n/ $(T_A)

CAMAC LI B = / hone/ epi cs/ nodul es/ bus/ camac/ i b/ $(T_A)

RELEASE | NCLUDES += -1/ home/ epi cs/ nodul es/ bus/ camac/ i ncl ude/ os

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 35

Chapter 4: EPICS Build Facility
Configuration Definitions

RELEASE | NCLUDES += -1/ hone/ epi cs/ nodul es/ bus/ camac/ i ncl ude
RELEASE_DBDFLAGS += -1 [hone/ epi cs/ nodul es/ bus/ camac/ dbd
RELEASE_DBFLAGS += -1/ home/ epi cs/ nodul es/ bus/ camac/ db
RELEASE_PERL_MODULE_DI RS += / hone/ epi cs/ nodul es/ bus/ camac/ | i b/ per|

RELEASE_DBDFLAGS will appear on the command lines for the doToRecordTypeH, mkmf.pl, and dbExpand tools,
and RELEASE_INCLUDES will appear on compiler command lines. CAMAC_LIB and CAMAC_BIN canbeusedin a
Makefile to define the location of needed scripts, executables, object files, libraries or other files.

Definitions in configure/RELEASE can be overridden for a specific host and target architectures by providing the
appropriate file or files containing overriding definitions.

confi gur e/ RELEASE. <epi cs_host _ar ch>. Conmon
confi gur e/ RELEASE. Conmon. <t ar get ar ch>
confi gur e/ RELEASE. <epi cs_host _ar ch>. <t ar get ar ch>

For makeBaseApp.pl created <top> directory structures, an EPICS base perl script, convertRelease.pl can do consistency
checks for the external <top> definitions in the RELEASE file as part of the <top> level build. Consistancy checks are
controlled by value of the macro CHECK_REL EASE defined in the <top> Makefile. CHECK_RELEASE can be set to
either YES or NO. and if YES, the default value, consistency checks will be done.

4.3.5 Modifying configure/RELEASE* files

You should dwaysdo a"gnunake cl ean uni nstal | " inthe <top> level directory BEFORE adding, changing, or
removing any definitions in the configure/RELEASE* files and then a"gnunake" at the top level AFTER making the
changes.

The file <top>/configure/REL EA SE contains definitions for components obtained from outside <top>. If you want to link
to anew release of anything defined in the file do the following:

cd <top>
gnhurmake cl ean uni nstall
edit confi gure/ RELEASE
change the relevant ling(s) to point to the new release
ghumake

All definitions in <top>/configure/RELEASE must result in complete path definitions, i.e. relative path names are not
permitted. If your site could have multiple releases of base and other support <top> components installed at once, these
path definitions should contain a release number as one of the components. However as the RELEASE file is read by
gnumake, it is permissible to use macro substitutions to define these pathnames, for example:

SUPPORT = /usr/local/iocapps/R3.14.9
EPICS_BASE = $(SUPPORT)/base/3-14-9-asd1

4.3.6 Specifying osclass specific definitions

Definitionsin a Makefile will apply to the host system (the platform on which make is executed) and each system defined
by CROSS_COMPILER_TARGET_ARCHS.

It ispossible to limit the systems for which a particular definition applies. Most M akefile definitions can be specified with
an appended underscore " " followed by an osclass specification. If an _<osclass> is not specified, then the definition
applies to the host and al CROSS COMPILER_TARGET_ARCHS systems. If an _<osclass> is specified, then the
definition applies only to systems with the specified os class. A Makefile definition can also have an appended
_DEFAULT specification. If _DEFAULT is appended, then the Makefile definition will apply to all systems that do not
have an _<osclass> specification for that definition. If a_DEFAULT is appended on a definition but the definition should
not apply to a particular system <osclass>, the value "-nil-" should be specified in the relevant Makefile definition.

36 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Configuration Definitions

Each system hasan OS_CLASS definition in its configure/osy CONFIG.Common.<arch> file. A few examples are:

For vxWorks-* targets <osclass> is vxWorks.
For RTEMS-* targets <osclass> is RTEMS.
For solaris-* targets <osclass> is solaris.

For win32-* targets <osclass> is WIN32.

For linux-* targets <osclass> is Linux.

For hpux-* targets <osclass> is hpux.

For darwin-* targets <osclass> is Darwin.
For aix-* targets <osclass> is Al X.

For example the following Makefile lines specify that product aaa should be created for al systems. Product bbb should
be created for systems that do not have OS_CLASS defined as solaris.

PROD = aaa
PROD solaris = -nil-
PROD_DEFAULT = bbb

4.3.7 Specifying T_A specific definitions
It is possible for the user to limit the systems for which a particular definition applies to specific target systems.

For example the following Makefile lines specify that product aaa should be created for all target architecture which allow
IOC type products and product bbb should be created only for the vxWorks-68040 and vxWorks-ppc603 targets.
Remember T_A is the build’s current target architecture. so PROD_|OC has the bbb value only when the current built
target architecture is vwWorks-68040 or vxWorks-ppc603

PROD | OC = aaa

VX _PROD vxWor ks- 68040 = bbb
VX _PROD_vxWor ks- ppc603 = bbb
PRCD | OC += VX PROD $(T_A)

4.3.8 Host and | oc targets

Build creates two type of makefile targets: Host and loc. Host targets are executables, object files, libraries, and scripts
which are not part of iocCore. loc targets are components of ioc libraries, executables, object files, or iocsh scripts which
will berunonanioc.

Each supported target system hasaVALID_BUIL DS definition which specifies the type of makefile targetsit can support.
This definition appearsin configure/osy CONFIG.Common.<arch> or configure/os/ CONFIG.<arch>.<arch> files.

For vxWorks systems VALID BUILDS isset to "loc".

For Unix type systems, VALID_BUILDS s set to "Host loc".
For RTEMS systems, VALID_BUILDS isset to "loc".

For WIN32 systems, VALID_BUILDS is set to "Host loc".

In a Makefile it is possible to limit the systems for which a particular PROD, TESTPROD, LIBRARY, SCRIPTS, and
OBJS is huilt. For example the following Makefile lines specify that product aaa should be created for systems that
support Host type builds. Product bbb should be created for systems that support 1oc type builds. Product ccc should be
created for all target systems.

PROD HOST = aaa
PROD | OC = bbb
PROD = ccc

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 37

Chapter 4: EPICS Build Facility
Makefiles

These definitions can be further limited by specifying an appended underscore " " followed by an osclass or DEFAULT
specification.

4.3.9 User specific override definitions

User specific override definitions are allowed in user created files in the user’'s <home>/configure subdirectory. These
override definitions will be used for buildsin all <top> directory structures. The files must have the following names.

<hone>/ confi gur e/ CONFI G_USER

<hone>/ confi gur e/ CONFI G_USER. <epi cs_host _arch>

<hone>/ confi gur e/ CONFI G_USER. Conmron. <t ar get ar ch>

<hone>/ confi gur e/ CONFI G_USER. <epi cs_host _arch>. <t ar get arch>

4.4 M akefiles

4.4.1 Name

The name of the makefile in each directory must be Makefile.

4.4.2 Included Files

Makefiles normally include files from <top>/configure. Thus the makefile "inherits" rules and definitions from configure.
The files in <top>/configure may in turn include files from another <top>/configure. This technique makes it possible to
share make variables and even rules across <top> directories.

4.4.3 Contents of M akefiles

4.4.3.1 Makefilesin directories containing subdirectories

A Makefile in this type of directory must define where <top> is relative to this directory, include <top>/configure files,
and specify the subdirectoriesin the desired order of make execution. Running gnumake in a directory with the following
Makefile lines will cause gnumake to be executed in <dir1> first and then <dir2>. The build rules do not allow a Makefile
to specify both subdirectories and components to be built.

TOP=. . /..

i ncl ude $(TOP)/ confi gure/ CONFI G
DIRS += <dirl1> <dir2>

i ncl ude $(TOP)/configure/ RULES_DI RS

4.4.3.2 Makefiles in directories where components are to be built

A Makefilein thistype of directory must define where <top> isrelative to this directory, include <top> configure files, and
specify the target component definitions. Optionally it may contain user defined rules. Running gnumake in a directory
with this type of Makefile will cause gnumake to create an O.<arch> subdirectory and then execute gnumake to build the
defined components in this subdirectory. It contains the following lines:

TOP=../../..

38 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Make

i ncl ude $(TOP)/ confi gure/ CONFI G
<conponent definition |ines>

i ncl ude $(TOP)/ confi gure/ RULES
<optional rules definitions>

4.4.4 Simple M akefile examples

Create an |10C type library named asloc from the source file asDbLib.c and install it into the
$(1 NSTALL_LOCATI ON)/ | i b/ <ar ch> directory.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
LI BRARY_I OC += asl oc

asloc_SRCS += asDbLib.c

i ncl ude $(TOP)/ confi gure/ RULES

For each Host type target architecture, create an executable named catest from the catestl.c and catest2.c source files
linking with the existing EPICS base ca and Com libraries, and then install the catest executable into the
$(| NSTALL_LOCATI ON) / bi n/ <ar ch> directory.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
PROD_HOST = cat est

catest _SRCS += catestl.c catest2.c
catest _LIBS = ca Com

i ncl ude $(TOP)/ confi gure/ RULES

4.5 Make

4.5.1 Makevs. gnumake

EPICS provides an extensive set of make rules. These rules only work with the GNU version of make, gnumake, which is
supplied by the Free Software Foundation. Thus, on most Unix systems, the native make will not work. On some systems,
e.g. Linux, GNU make may be the default. This manual always uses gnumake in the examples.

4.5.2 Frequently used M ake commands

NOTE: It is possible to invoke the following commands for a single target architecture by appending <arch> to the target
in the command.

The most frequently used make commands are:

gnumake
This rebuilds and installs everything that is not up to date.
NOTE: Executing gnumake without arguments is the same as "gnhumake install"

gnurmeke hel p
This command can be executed from the <top> directory only. This command prints a page describing the most
frequently used make commands.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 39

Chapter 4: EPICS Build Facility
Make

gnunake install
This rebuilds and installs everything that is not up to date.

gnunake all
Thisisthe same as "gnumake install".

gnunake buil dlnstall
Thisisthe same as "gnumake install".

gnunake <arch>
This rebuilds and installs everything that is not up to date for a single specified target arch.
NOTE: Thisisthe same as "gnumake install.<arch>"

gnunake cl ean
This can be used to save disk space by deleting the O.<arch> directories that gnumake will create, but does not
remove any installed files from the bin, db, dbd etc. directories. "gnumake clean.<arch>" can be invoked to clean a
single architecture.

gnunake archcl ean
This command will remove the current build’s O.<arch> directories but not O.Common directory.

gnunake real cl ean
This command will remove ALL the O.<arch> subdirectories (even those created by a gnumake from another
EPICS HOST_ARCH).

gnunake rebuil d
This is the same as "gnumake clean install”. If you are unsure about the state of the generated files in an
application, just execute "gnumake rebuild”.

gnunake uninstal |
This command can be executed from the <top> directory only. It will remove everything installed by gnumake in
the include, lib, bin, db, dbd, etc. directories.

gnunake real uninstall
This command can be executed from the <top> directory only. It will remove all theinstall directories, include, lib,
bin, db, dbd, etc.

gnunake di stcl ean
This command can be executed from the <top> directory only. It is the same as issuing both the realclean and
realuninstall commands.

gnunake cvscl ean
This command can be executed from the <top> directory only. It removes cvs .#* filesin the make directory tree.

4.5.3 Maketargets

The following is a summary of targets that can be specified for gnumake:

e <action>

e <arch>

» <action>.<arch>
o <dir>

40 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Makefile definitions

o <dir>.<action>
o <dir>.<arch>
o <dir>.<action>.<arch>

where:

<arch>isEPICS HOST_ARCH, solaris-sparc, vxWorks-68040, win32-x86, etc. - builds named architecture only.
<action> is help, clean, realclean, distclean, inc, install, build, rebuild, buildinstall, realuninstall, or uninstall
NOTE: help, uninstall, distclean, cvsclean, and realuninstall can only be specified at <top>.

NOTE: realclean cannot be specified in an * .<arch> subdirectory.

<dir> is subdirectory name

Note: You can build using your os vendors' native compiler and also build using a supported aternate compiler in the
same directory structure because the executables and libraries will be created and installed into separate directories (e.g
bin/solaris-sparc and bin/solaris-sparc-gnu). You can do this by changing your EPI CS_HOST _ARCH, environment
variable between builds or by setting EPI CS_HOST _ ARCH on the gnumake command line.

4.5.4 Header file dependencies

All product, test product, and library source files which appear in one of the source file definitions (e.g. SRCS,
PROD_SRCS, LIB_SRCS, <prodname>_SRCS) will have their header file dependencies automatically generated and
included as part of the Makefileif HDEPENDS is set to YES in the Makefile and/or in base/configure/ CONFIG_SITE.

4.6 Makefile definitions

The following components can be defined in a Makefile:

4.6.1 Sourcefiledirectories

Normally all product, test product, and library source files reside in the same directory as the Makefile. OS specific source
files are allowed and should reside in subdirectories os/<os_class> or os/posix or os/defaullt.

The build rules also allow sourcefiles to reside in subdirectories of the current Makefile directory (src directory). For each
subdirectory <dir> containing source files add the SRC_DIRS definition.

SRC_ DIRS += <dir>
where <dir> is arelative path definition. An example of SRC_DIRS is
SRCDIRS += ../dirl ../dir2

The directory search order for the above definition is

..l 0s/$(0OS_CLASS) ../os/posix ../os/default
../dirl/os/$(0OS_CLASS) ../dirl/os/posix ../dirl/os/default
./dir2/os/$(0S_CLASS) ../dir2/os/posix ../dir2/os/default

Cidirl .. /dir2

where the build directory O.<os class> is. and the src directory is ...

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 41

Chapter 4: EPICS Build Facility
Makefile definitions

4.6.2 Posix C source code

The epics base config files assume posix source code and define POSIX to be YES as the default. Individual Makefiles
can override this by setting POSIX to NO. Source code files may have the suffix .c, .cc, .cpp, or .C.

4.6.3 Breakpoint Tables

For each breakpoint table dbd file, bpt<table name>.dbd, to be created from an existing bpt<table name>.datafile, add the
definition
DBD += bpt <t abl e nane>. dbd

to the Makefile. The following Makefile will create a bptTypeldegC.dbd file from an existing bptTypeldegC.data file
using the EPICS base utility program makeBpt and install the new dbd file into the $(INSTALL_LOCATION)/dbd
directory.

TOP=../../..

i ncl ude $(TOPR)/ confi gure/ CONFI G
DBD += bpt TypeJdegC. dbd

i ncl ude $(TOP)/ confi gure/ RULES

4.6.4 Record Type Definitions

For each new record type, the following definition should be added to the makefile:
DBDI NC += <rectype>Record

A <rectype>Record.h header file will be created from an existing <rectype>Record.dbd file using the EPICS base utility
program dbToRecordTypeH. This header will be installed into the $(INSTALL_L OCATION)/include directory and the
dbd file will be installed into the $(INSTALL_LOCATION)/dbd directory.

The following Makefile will create xxxRecord.h from an existing xxxRecord.dbd file, install xxxRecord.h into
$(INSTALL_LOCATION)/include, and install xxxRecord.dbd into $(INSTALL_L OCATION)/dbd.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
DBDI NC += xxxRecord

i ncl ude $(TOP)/ confi gure/ RULES

4.6.5 Menus

If amenu menu<name>.dbd file is present, then add the following definition:
DBDI NC += menu<name>. h

The header file, menu<name>.h will be created from the existing menu<name>.dbd file using the EPICS base utility
program dbToMenuH and installed into the $(INSTALL_LOCATION)/include directory and the menu dbd file will be
installed into $(INSTALL_L OCATION)/dbd.

The following Makefile will create a menuConvert.h file from an existing menuConvert.dbd file and install
menuConvert.h into $(INSTALL_LOCATION)/include and menuConvert.dbd into $(INSTALL_LOCATION)/dbd.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
DBDI NC = menuConvert. h

i ncl ude $(TOP)/ confi gure/ RULES

42 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Makefile definitions

4.6.6 Expanded Database Definition Files

Database definition include files named <name>Include.dbd containing includes for other database definition files can be
expanded by the EPICS base utility program dbExpand into a created <name>.dbd file and the <name>.dbd file installed
into $(INSTALL_L OCATION)/dbd. The following variables control the process:

DBD += <nane>. dbd

USR DBDFLAGS += -1 <include path>

USR DBDFLAGS += -S <macro substitutions>
<name> DBD += <filel> dbd <file2>. dbd ...

where
DBD += <nane>. dbd

is the name of the output dbd file to contain the expanded definitions. It is created by expanding an existing or build
created <name>Include.dbd file and then copied into $(INSTALL_LOCATION)/dbd.

An example of afile to be expanded is examplelnclude.dbd containing the following lines

i ncl ude "base. dbd"
i ncl ude "xxxRecord. dbd"
devi ce(xxx, CONSTANT, devXxxSoft, " Sof t Channel ")

USR _DBDFLAGS defines optional flags for doExpand. Currently only an include path (-I <path>) and macro substitution
(-S <substitution>) are supported. The include paths for EPICS base/dbd, and other <top>/dbd directories will
automatically be added during the build if the <top> names are specified in the configure/REL EA SE file.

A database definition include file named <name>Include.dbd containing includes for other database definition files can
be created from a <name>_DBD definition. The lines

DBD += <nane>. dbd
<nanme> DBD += <filel> dbd <file2>.dbd ...

will create an expanded dbd file <name>.dbd by first creating a <name>Include.dbd. For each filename in the
<name>_DBD definition, the created <name>Include.dbd will contain an include statement for that filename. Then the
expanded DBD file is generated from the created <name>Include.dbd file and installed into $(INSTALL_LOCATION)/
dbd.

The following Makefile will create an expanded dbd file named example.dbd from an existing examplelnclude.dbd file
and then install example.dbd into the $(INSTALL_L OCATION)/dbd directory.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G
DBD += exanpl eApp. dbd

i ncl ude $(TOP)/ confi gure/ RULES

The following Makefile will create an examplelnclude.dbd file from the example_DBD definition then expand it to create
an expanded dbd file, example.dbd, and install example.dbd into the $(INSTALL_LOCATION)/dbd directory.

TOP=../../..

i ncl ude $(TOP)/ confi gure/ CONFI G

DBD += exanpl e. dbd

exanpl e_DBD += base. dbd xxxRecord. dbd xxxSupport. dbd
i ncl ude $(TOP)/ confi gure/ RULES

The created examplelnclude.dbd file will contain the following lines

i ncl ude "base. dbd"
i ncl ude "xxxRecord. dbd"
i ncl ude "xxxSupport. dbd"

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 43

Chapter 4: EPICS Build Facility
Makefile definitions

4.6.7 Registering Support Routines for Expanded Database Definition Files

A source file which registers simple static variables and record/device/driver support routines with iocsh can be created.
Thelist of variables and routines to register is obtained from linesin an existing dbd file.

The following line in a Makefile will result in <nanme>_r egi st er Recor dDevi ceDri ver. cpp being created,
compiled, and linked into <pr odnane>. It requires that the file <nanme>. dbd exist.

<pr odnane>_SRCS += <nane>_regi st er RecordDevi ceDri ver. cpp

An example of registering the variable mySubDebug and the routines mySublnit and mySubProcess is <name>.dbd
containg the following lines

vari abl e(mySubDebug)
function(nySublnit)
function(nySubProcess)

4.6.8 Database Definition Files

Thefollowing line installs the existing named dbd filesinto $(INSTALL_L OCATION)/dbd without expansion.
DBD += <nane>. dbd

4.6.9 DBD install files

Definitions of the form:
DBD | NSTALLS += <nane>

result in files being installed to the $(INSTALL_L OCATION/dbd directory. The file <name> can appear with or without a
directory prefix. If the file has a directory prefix e.g. $(APPNAME)/dbd/, it is copied from the specified location. If a
directory prefix is not present, make will look in the current source directory for thefile.

4.6.10 Database Files

For most databases just the name of the database has to be specified. Make will figure out how to generate the file:
DB += xxx.db
generates xxx.db depending on which source files exist and installsit into $(INSTALL_LOCATION)/db.

A <name>.db database file will be created from an optiona <name>.template file and/or an optional
<name>.substitutions file, If the substitution file exists but the template file is not named <name>.template, the template
file name can be specified as

<nanme> TEMPLATE = <tenplate file nane>

A *<nn>.db database file will be created from a *.template and a * <nn>.substitutions file, (where nn is an optional index
number).

If a<name> substitutions file contains "file" references to other input files, these referenced files are made dependencies
of the created <name>.db by the makeDbDepends.pl perl tool.

The Macro Substitutions and Include tool, msi, will be used to generate the database, and msi must either be in your path
or you must redefine MSI as the full path name to the msi binary in a RELEASE file or Makefile. An example MSI
definitionis

MBI = /usr/local/epics/extensions/bin/${EPI CS HOST ARCH}/ nsi

44 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Makefile definitions

Template files <name>.template, and db files, <name>.db, will be created from an edf file <name>.edf and an <name>.edf
file will be created from a <name>.sch file.

Template and substitution files can be installed.
DB += xxx.tenpl ate xxx.substitutions

generates and install s these files. If one or more xxx.substitutions files are to be created by script, the script name must be
placed in the CREATESUBSTITUTIONS variable (e.g. CREATESUBSTITUTIONS=mySubst.pl). This script will be
executed by gnumake with the prefix of the substitution file name to be generated asits argument. If (and only if) there are
script generated substitutions files, the prefix of any inflated database's name may not equal the prefix of the name of any
template used within the directory.

4.6.11 DB install files

Definitions of the form:
DB | NSTALLS += <nane>

result in files being installed to the $(INSTALL_L OCATION/db directory. The file <name> can appear with or without a
directory prefix. If the file has a directory prefix e.g. $(APPNAME)/db/, it is copied from the specified location. If a
directory prefix is not present, make will look in the current source directory for thefile.

4.6.12 Compile and link command options
Any of the following can be specified:

4.6.12.1 Options for all compile/link commands.
These definitions will apply to all compiler and linker targets.

USR | NCLUDES += - <nane>
header file directories each prefixed by a"-1".
USR_I NCLUDES_<oscl ass> += - | <nanme>
os specific header file directories each prefixed by a"-I".
USR_|I NCLUDES_DEFAULT += -1 <name>
header file directories each prefixed by a"-1" for any arch that does not have aUSR_INCLUDE_<osclass>
definition
USR CFLAGS += <c fl ags>
¢ compiler options.
USR CFLAGS <oscl ass> += <c flags>
o0s specific ¢ compiler options.
USR CFLAGS <T_A> += <c fl ags>
target architecture specific ¢ compiler options.
USR CFLAGS DEFAULT += <c fl ags>
¢ compiler options for any arch that does not have aUSR_CFLAGS <osclass> definition
USR_CXXFLAGS += <c++ flags>
c++ compiler options.
USR_CXXFLAGS <oscl ass> += <c++ fl ags>
c++ compiler options for the specified osclass.
USR _CXXFLAGS <T _A> += <c++ flags>
c++ compiler options for the specified target architecture.
USR_CXXFLAGS_DEFAULT += <c++ fl ags>
c++ compiler options for any arch that does not have aUSR_CXXFLAGS <osclass> definition
USR_CPPFLAGS += <preprocessor flags>

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 45

Chapter 4: EPICS Build Facility
Makefile definitions

C preprocessor options.
USR_CPPFLAGS <oscl ass> += <preprocessor flags>
0s specific ¢ preprocessor options.
USR_CPPFLAGS <T_A> += <preprocessor flags>
target architecture specific ¢ preprocessor options.
USR_CPPFLAGS DEFAULT += <preprocessor fl ags>
C preprocessor options for any arch that does not have aUSR_CPPFLAGS_<osclass> definition
USR LDFLAGS += <linker flags>
linker options.
USR LDFLAGS <oscl ass> += <linker fl ags>
os specific linker options.
USR LDFLAGS DEFAULT += <linker flags>
linker options for any arch that does not have a USR_LDFLAGS <osclass> definition

4.6.12.2 Options for atarget specific compile/link command.

<nane>_| NCLUDES += -| <nane>
header file directories each prefixed by a"-1".
<nane>_ | NCLUDES <oscl ass> += - | <nane>
os specific header file directories each prefixed by a"-I".
<name>_| NCLUDES <T_A> += -| <nane>
target architecture specific header file directories each prefixed by a"-1".
<name>_CFLAGS += <c fl ags>
¢ compiler options.
<name>_ CFLAGS <oscl ass> += <c fl ags>
0s specific c compiler options.
<name>_ CFLAGS <T_A> += <c fl ags>
target architecture specific ¢ compiler options.
<name>_ CXXFLAGS += <c++ fl ags>
c++ compiler options.
<name>_ CXXFLAGS_<oscl ass> += <c++ fl ags>
c++ compiler options for the specified osclass.
<name>_ CXXFLAGS <T_A> += <c++ fl ags>
c++ compiler options for the specified target architecture.
<name>_CPPFLAGS += <preprocessor flags>
C preprocessor options.
<name>_CPPFLAGS_<oscl ass> += <preprocessor flags>
0s specific ¢ preprocessor options.
<name>_ CPPFLAGS_<T_A> += <preprocessor flags>
target architecture specific ¢ preprocessor options.
<name>_ LDFLAGS += <linker flags>
linker options.
<name>_ LDFLAGS <oscl ass> += <linker flags>
os specific linker options.

46.13 Libraries

A library is created and installed into $(INSTALL_L OCATION)/lib/<arch> by specifying its name and the name of the
object and/or source files containing code for the library. An object or source file name can appear with or without a
directory prefix. If the file name has a directory prefix e.g. $(EPICS_BASE_BIN), it is taken from the specified location.
If adirectory prefix is not present, make will first ook in the source directories for afile with the specified name and next
try to create the file using existing configure rules. A library filename prefix may be prepended to the library name when

46 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Makefile definitions

thefile is created. For Unix type systems and vxWorks the library prefix is lib and there is no prefix for WIN32. Also a
library suffix appropriate for the library type and target arch (e.g. ., .so, .lib, .dll) will be appended to the filename when
thefileis created.

vxWorksand RTEM S Note: Only archive libraries are created.

Shared libraries Note: Shared libraries can be built for any or al HOST type architectures. The definition of
SHARED_LIBRARIES (YES/NO) in base/configure/ CONFIG_SITE determines whether shared or archive libraries will
be built. When SHARED LIBRARIES is YES, both archive and shared libraries are built. This definition can be
overridden for a specific arch in an configure/losyCONFIG_SITE.<arch>.Common file.,The default definition for
SHARED_LIBRARIESin the EPICS base distribution fileis YES for al host systems.

win32 Note: An object library file is created when SHARED LIBRARIES=NO, <name>.lib which is installed into
$(INSTALL_LOCATION)/lib/<arch>. Two library files are created when SHARED LIBRARIES=YES, <name>.lib, an
import library for DLLs, whichisinstalled into $(INSTALL_L OCATION)/lib/<arch>, and <name>.dll which isinstalled
into $(INSTALL_LOCATION)/bin/<arch>. (Warning: The file <name>.lib will only be created by the build if there are
exported symbols from thelibrary.) If SHARED_LIBRARIES=YES, the directory $(INSTALL_L OCATION)/bin/<arch>
must bein the user’s path during builds to alow invoking executables which were linked with shared libraries. NOTE: the
<name>.lib files are different for shared and nonshared builds.

4.6.13.1 Specifying the library name.
Any of the following can be specified:

LI BRARY += <name>
A library will be created for every target arch.
LI BRARY_<oscl ass> += <name>
Library <name> will be created for all archs of the specified osclass.
LI BRARY_DEFAULT += <name>
Library <name> will be created for any arch that does not have a LIBRARY _<osclass> definition
LI BRARY_I OC += <nane>
Library <name> will be created for |OC type archs.
LI BRARY_|I OC <oscl ass> += <nane>
Library <name> will be created for all 10C type archs of the specified osclass.
LI BRARY_I OC DEFAULT += <nane>
Library <name> will be created for any 1OC type arch that does not have a LIBRARY_IOC_<osclass>
definition
LI BRARY_HOST += <name>
Library <name> will be created for HOST type archs.
LI BRARY_HOST <oscl ass> += <nane>
Library <name> will be created for all HOST type archs of the specified osclass.
LI BRARY_HOST_DEFAULT += <name>
Library <name> will be created for any HOST type arch that does not have aLIBRARY_HOST _<osclass>
definition

4.6.13.2 Specifying library source file names

Source file names, which must have a suffix, are defined as follows:

SRCS += <nane>
Source fileswill be used for all defined libraries and products.
SRCS _<oscl ass> += <nane>
Source fileswill be used for all defined libraries and products for all archs of the specified osclass.
SRCS_DEFAULT += <nane>
Source files will be used for all defined libraries and products for any arch that does not have a
SRCS <osclass> definition

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 47

Chapter 4: EPICS Build Facility
Makefile definitions

LIBSRCS and LIB_SRCS have the same meaning. LIBSRCS is deprecated, but retained for R3.13 compatibility.

LI BSRCS += <name>
Source fileswill be used for all defined libraries.
LI BSRCS_<oscl ass> += <nane>
Source fileswill be used for all defined libraries for al archs of the specified osclass.
LI BSRCS_DEFAULT += <name>
Source files will be used for all defined libraries for any arch that does not have a LIBSRCS <osclass>
definition

USR_SRCS += <nane>
Source fileswill be used for al defined products and libraries.
USR _SRCS <oscl ass> += <nane>
Source fileswill be used for all defined products and libraries for all archs of the specified osclass.
USR_SRCS_DEFAULT += <name>
Source files will be used for all defined products and libraries for any arch that does not have a
USR_SRCS <osclass> definition

LI B_SRCS += <nane>
Source fileswill be used for al libraries.
LI B_SRCS <oscl ass> += <nane>
Source fileswill be used for all defined libraries for al archs of the specified osclass.
LI B_SRCS DEFAULT += <nane>
Source files will be used for all defined libraries for any arch that does not have a LIB_SRCS <osclass>
definition

<l i bname>_SRCS += <nane>
Source files will be used for the named library.
<l i bname>_SRCS <oscl ass> += <nane>
Source fileswill be used for named library for all archs of the specified osclass.
<l i bname>_SRCS DEFAULT += <namne>
Source files will be used for named library for any arch that does not have a <libname>_SRCS <osclass>
definition

4.6.13.3 Specifying library object file names

Library object file names should only be specified for object files which will not be built in the current directory. For
object files built in the current directory, library source file names should be specified. See Specifying Library Source File
Names above.

Object files which have filename with a".0" or ".obj" suffix are defined as follows and can be specified without the suffix
but should have the directory prefix

USR OBJS += <nane>
Object fileswill be used in builds of all products and libraries
USR OBJS <oscl ass> += <nane>
Object fileswill be used in builds of all products and libraries for archs with the specified osclass.
USR OBJS DEFAULT += <name>
Object files will be used in builds of all products and libraries for archs without a USR_OBJS <osclass>
definition specified.
LI B_OBJS += <nane>
Object fileswill be used in builds of al libraries.
LI B_OBJS <oscl ass> += <nane>
Object fileswill be used in builds of all libraries for archs of the specified osclass.
LI B_OBJS DEFAULT +=<name>

48

EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Makefile definitions

Object files will be used in builds of al libraries for archs without a LIB_OBJS <osclass> definition
specified.

<l i bname>_0BJS += <nane>
Object fileswill be used for al builds of the named library)

<l i bname>_0BJS <oscl ass> += <nane>
Object fileswill be used in builds of the library for archs with the specified osclass.

<l i bname>_0BJS DEFAULT += <name>
Object fileswill be used in builds of the library for archs without a <libname>_OBJS_<osclass> definition
specified.

Combined object files, from R3.13 built modules and applications which have file names that do not include a ".0" or
".0bj" suffix (e.g. xyzLib) are defined as follows:

USR OBJLI BS += <nane>
Combined object files will be used in builds of all libraries and products.
USR _OBJLI BS <oscl ass> += <nane>
Combined object files will be used in builds of all libraries and products for archs of the specified osclass.
USR_OBJLI BS_DEFAULT += <name>
Combined object files will be used in builds of al libraries and products for archs without a
USR_OBJLIBS_<osclass> definition specified.

LI B_OBJLI BS += <nane>
Combined object fileswill be used in builds of al libraries.
LI B_OBJLI BS <oscl ass> += <nane>
Combined object files will be used in builds of all libraries for archs of the specified osclass.
LI B_OBJLI BS_DEFAULT += <name>
Combined object files will be used in builds of al libraries for archs without a LIB_OBJLIBS <osclass>
definition specified.

<l i bname>_0OBJLI BS += <nane>
Combined object fileswill be used for all builds of the named library.
<l i bname>_OBJLI BS_<oscl ass> += <nane>
Combined object files will be used in builds of the library for archs with the specified osclass.
<l i bname>_0OBJLI BS_DEFAULT += <nane>
Combined object files will be wused in builds of the Ilibrary for archs without a
<libname>_OBJLIBS_<osclass> definition specified.

<l i bname>_LDOBJS += <nane>
Combined object files will be used for all builds of the named library. (deprecated)
<l i bname>_LDOBJS <oscl ass> += <nane>
Combined object files will be used in builds of the library for archs with the specified osclass. (deprecated)
<l i bname>_LDOBJS DEFAULT += <nane>
Combined object files will be used in builds of the library for archs without a <libname>_0OBJS <osclass>
definition specified. (deprecated)

4.6.13.4 LIBOBJS definitions
Previous versions of epics (3.13 and before) accepted definitions like:
LI BOBJS += $(<support> BIN)/xxx.o0

These are gathered together in files such as basel IBOBJS. To use such definitions include the lines:

-include ../baselLl BOBJS
<l i bname>_OBJS += $(LI BOBJS)

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 49

Chapter 4: EPICS Build Facility
Makefile definitions

Note: vxWorks applications created by makeBaseApp.pl from base release R3.14.0alpha3 and later no longer have afile
named basel IBOBJS. Base record and device support now existsin archive libraries.

4.6.13.5 Specifying dependant libraries to be linked when creating alibrary

For each library name specified which is not a system library nor alibrary from an EPICS top defined in the configure/
REL EASE file, a<name>_DIR definition must be present in the Makefile to specify the location of the library.

Library names, which must not have a directory and "lib" prefix nor a suffix, are defined as follows:

LI B_LI BS += <nane>
Librariesto be used when linking all defined libraries.
LI B LI BS <oscl ass> += <nane>
Librariesto be used or all archs of the specified osclass when linking all defined libraries.
LI B LI BS_ DEFAULT += <name>
Libraries to be used for any arch that does not have a LIB_LIBS <osclass> definition when linking all
defined libraries.

USR LI BS += <nane>
Librariesto be used when linking all defined products and libraries.
USR LI BS <oscl ass> += <nane>
Librariesto be used or all archs of the specified osclasswhen linking all defined products and libraries.
USR LI BS DEFAULT += <name>
Libraries to be used for any arch that does not have a USR_LIBS <osclass> definition when linking all
defined products and libraries.

<l i bname>_LI BS += <name>
Librariesto be used for linking the named library.
<l i bname>_LI BS <oscl ass> += <nanme>
Librarieswill be used for all archs of the specified osclass for linking named library.
<l i bname>_LIBS DEFAULT += <name>
Libraries to be used for any arch that does not have a <libname>_LIBS_<osclass> definition when linking
named library.

<li bnane>_SYS_LI BS += <nane>
System libraries to be used for linking the named library.
<l i bname>_SYS LI BS <oscl ass> += <nane>
System libraries will be used for all archs of the specified osclass for linking named library.
<l i bname>_SYS LI BS DEFAULT += <nane>
System libraries to be used for any arch that does not have a <libname>_LIBS <osclass> definition when
linking named library.

4.6.13.6 The order of dependant libraries

Dependant library names appear in the following order on alibrary link line:

1. <libname>_LIBS
2. <libname>_LIBS <osclass> or <libname> LIBS DEFAULT
3. LIB_LIBS
4. LIB_LIBS <osclass> or LIB_LIBS DEFAULT
5. USR_LIBS
6. USR_LIBS <osclass> or USR_LIBS DEFAULT
7. <libname>_SYS LIBS
50 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Makefile definitions

8. <libname>_SYS LIBS <osclass> or <libname>_SYS LIBS DEFAULT
9. LIB_SYS LIBS

10. LIB_SYS LIBS <osclass> or LIB_SYS LIBS DEFAULT

11. USR_SYS LIBS

12. USR_SYS LIBS <osclass> or USR_SYS LIBS DEFAULT

4.6.13.7 Specifying library DLL file names (deprecated)

WIN32 libraries require all external references to be resolved, so if alibrary contains references to items in other DLL
libraries, these DLL library names must be specified (without directory prefix and without ".dII" suffix) as follows:

DLL_LI BS += <nane>

These DLLswill be used for all libraries.
<libname> DLL LI BS += <nane>

These DLLswill be used for the named library.

Each <name> must have a corresponding <name>_DIR definition specifying its directory location.

4.6.13.8 Specifying shared library version number
A library version number can be specified when creating a shared library as follows:
SHRLI B_VERSI ON += <ver si on>

On WIN32 thisresultsin "/version:3(SHRLIB_VERSION)" link option. On Unix type hosts".$(SHRLIB_VERSION)" is
appended to the shared library name and a symbolic link is created for the unversioned library name.
$(EPICS_VERSION).$(EPICS_REVISION) isthe default value for SHRLIB_VERSION.

4.6.13.9 Library example:

LI BRARY_vxWorks += vxWorksOnly
LI BRARY_I OC += i ocOnly

LI BRARY_HOST += hostOnly

LI BRARY += al |

vxWorksOnly_0OBJS += $(LI NAC BI N)/ vxOnl y1
vxWor ksOnly _SRCS += vxOnly2.c
iocOnly_OBJS += $(LINAC BIN)/iocOnlyl
iocOnly SRCS += iocOnly2. cpp

host Onl y_0OBJS += $(LINAC BIN)/host1l

all _OBJS += $(LINAC BIN)/all1

all _SRCS += all 2. cpp

If the architectures defined in <top>/configure are solaris-sparc and vxWorks-68040 and LINAC is defined in the <top>/
CONFIGURE/RELEASE file, then the following libraries will be created:

» $(INSTALL_LOCATION)/bin/vxWork-68040/libvxWorksOnly.a: $(LINAC_BIN)/vxOnlyl.0 vxOnly2.0
* $(INSTALL_L OCATION)/bin/vxWork-68040/libiocOnly.a: $(LINAC_BIN/iocOnlyl.0iocOnly2.0

* $(INSTALL_L OCATION)/lib/solaris-sparc/libiocOnly.a: $(LINAC_BIN)/iocOnlyl.0 iocOnly2.0

e $(INSTALL_LOCATION)/lib/solaris-sparc/libhostOnly.a: $(LINAC_BIN)/host1.0

* $(INSTALL_LOCATION)/bin/vxWork-68040/liball.a: $(LINAC_BIN)/alll.0 al2.0

* $(INSTALL_LOCATION)/lib/solaris-sparc/libal.a: $(LINAC_BIN)/dll.oal2.0

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 51

Chapter 4: EPICS Build Facility
Makefile definitions

4.6.14 Loadablelibraries

Loadable libraries are regular libraries which are not required to have all symbols resolved during the build. The intent is
to create dynamic plugins so no archive library is created. Source file, object files, and dependant libraries are specified in
exactly the same way as for regular libraries.

Any of the following can be specified:

LOADABLE_LI BRARY += <nane>
The <name> loadable library will be created for every target arch.
LOADABLE LI BRARY <oscl ass> += <nane>
Loadable library <name> will be created for all archs of the specified osclass.
LOADABLE_LI BRARY_DEFAULT += <name>
Loadable library <name> will be created for any arch that does not have a
LOADABLE_LIBRARY_<osclass> definition

LOADABLE_LI BRARY_HOST += <nane>
Loadable library <name> will be created for HOST type archs.
LOADABLE LI BRARY_HOST <oscl ass> += <nane>
Loadable library <name> will be created for all HOST type archs of the specified osclass.
LOADABLE_LI BRARY_HOST_DEFAULT += <nane>
Loadable library <name> will be created for any HOST type arch that does not have a
LOADABLE_LIBRARY_HOST_<osclass> definition

4.6.15 Combined object libraries (VxWorksonly)

Combined object libraries are regular combined object files which have been created by linking together multiple object
files. OBJLIB specifications in the Makefile create a combined object file and a corresponding munch file for vxWorks
target architectures only. Combined object libraries have a Library.o suffix. It is possible to generate and install combined
object libraries by using definitions:

OBJLI B += <nane>

OBJLI B_vxWor ks += <name>

OBJLI B_SRCS += <srcnamel> <srcnanme2> ...
OBJLI B_OBJS += <obj nanel> <obj nane2> ...

These definitions result in the combined object file <name>Library.o and its corresponding <name>Library.munch munch
file being built for each vxWorks architecture from source/object files in the OBJLIB_SRCSOBJLIB_OBJS definitions.
The combined object file and the munch file are installed into the $(INSTALL_L OCATION)/bin/<arch> directory.

4.6.16 Object Files

It is possible to generate and install object files by using definitions:

OBJS += <nane>

OBJS <oscl ass> += <nane>
OBJS _DEFAULT += <nane>

OBJS | OC += <nane>

OBJS | OC <oscl ass> += <nane>
OBJS_| OC DEFAULT += <name>
OBJS _HOST += <nane>

OBJS HOST <oscl ass> += <nane>
OBJS_HOST_DEFAULT += <name>

52 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Makefile definitions

These will cause the specified file to be generated from an existing source file for the appropriate target arch and installed
into $(INSTALL_L OCATION)/bin/<target_arch>.

The following Makefile will create the abc object file for all target architectures, the def object file for all target archs
except vxWorks, and the xyz object file only for the vxWorks target architecture and install them into the appropriate
$(INSTALL_LOCATION)/bin/<arch> directory.

TOP=../../..
i ncl ude $(TOP)/ confi gure/ CONFI G
OBJS += abc

OBJS vxWorks += xyz
OBJS DEFAULT += def
i ncl ude $(TOP)/ confi gure/ RULES

4.6.17 State Notation Programs

A state notation program file can be specified as a source file in any SRC definition. For example:
<prodnane>_SRCS += <nane>. stt

The state notation compiler snc will generate the file <nane>. ¢ from the state notation program file <nane>. stt.
This Cfileis compiled and the resulting object fileis linked into the <pr odnane> product.

A state notation source file must have the extension . st or . stt. The. st fileis passed through the C preprocessor
beforeit is processed by snc.

If you have state notation language sourcefiles(. stt and. st files), the module seq must be built and SNCSEQ defined
in the RELEASE file. If the state notation language source files require ¢ preprocessing before conversion to ¢ source
(. st files), gcc must bein your path.

4.6.18 Scripts, etc.

Any of the following can be specified:

SCRI PTS += <nane>
A script will beinstalled from the src directory to the $(INSTALL_L OCATION)/bin/<arch> directories.
SCRI PTS <oscl ass> += <nane>
Script <name> will beinstalled for al archs of the specified osclass.
SCRI PTS_DEFAULT += <nane>
Script <name> will beinstalled for any arch that does not have a SCRIPTS_<osclass> definition
SCRI PTS | OC += <nane>
Script <name> will beinstalled for IOC type archs.
SCRI PTS | OC <oscl ass> += <nane>
Script <name> will beinstalled for al 10C type archs of the specified osclass.
SCRI PTS_| OC_DEFAULT += <nanme>
Script <name> will be installed for any 10C type arch that does not have a SCRIPTS_|OC_<osclass>
definition
SCRI PTS_HOST += <nane>
Script <name> will beinstalled for HOST type archs.
SCRI PTS _HOST _<oscl ass> += <nane>
Script <name> will beinstalled for all HOST type archs of the specified osclass.
SCRI PTS_HOST_DEFAULT += <name>
Script <name> will be installed for any HOST type arch that does not have a SCRIPTS_HOST_<osclass>
definition

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 53

Chapter 4: EPICS Build Facility
Makefile definitions

Definitions of the form:

SCRI PTS_<oscl ass> += <nanel>
SCRI PTS_DEFAULT += <nane2>

results in the <namel> script being installed from the src directory to the $(INSTALL_LOCATION)/bin/<arch>
directories for all target archs of the specified os class <osclass> and the <name2> script installed into the
S(INSTALL_LOCATION)/bin/<arch> directories of all other target archs.

4.6.19 Includefiles

A definition of the form:

I NC += <nane>. h
resultsin file <name>.h being installed or created and installed to the $(INSTALL_LOCATION)/include directory.
Definitions of the form:

| NC DEFAULT += <nane>. h
I NC <oscl ass> += <nanme>. h

results in file <name>.h being installed or created and installed into the appropriate $(INSTALL_LOCATION)/include/
os/<osclass> directory.

4.6.20 Html and Doc files

A definition of the form:

HTMLS DI R = <di r nanme>
HTMLS += <nane>

resultsin file <name> being installed from the src directory to the $(INSTALL_L OCATION)/html/<dirname> directory.
A definition of the form:
DOCS += <nane>

resultsin file <name> being installed from the src directory to the $(INSTALL_LOCATION)/doc directory.

4.6.21 Templates

Adding definitions of the form

TEVMPLATES_DI R = <di r nane>
TEMPLATES += <nane>

results in the file <name> being installed from the src directory to the $(INSTALL_L OCATION)/templates/<dirname>
directory. If adirectory structure of template filesisto be installed, the template file names may include adirectory prefix.

4.6.22 Lex and yac

If a<name>.c source file specified in a Makefile definition is not found in the source directory, gnumake will try to build
it from <name>.y and <name>_lex.| filesin the source directory. Lex converts a<name>.l Lex code fileto alex.yy.c file
which the build rules renames to <name>.c. Yacc converts a<name>.y yacc code file to ay.tab.c file, which the build rules
renames to <name>.c. Optionally yacc can create ay.tab.h file which the build rules renames to <name>.h.

54 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Makefile definitions

4.6.23 Products

A product executable is created for each <arch> and installed into $(INSTALL_L OCATION)/bin/<arch> by specifying its
name and the name of either the object or source files containing code for the product. An object or source file name can
appear with or without a directory prefix. Object files should contain a directory prefix. If the file has a directory prefix
e.g. $(EPICS_BASE_BIN), thefileistaken from the specified location. If adirectory prefix isnot present, make will look
in the source directories for afile with the specified name or try build it using existing rules. An executabl e filename suffix
appropriate for the target arch (e.g. .exe) may be appended to the filename when the file is created.

PROD specificationsin the Makefile for vxWorks target architectures create a combined object file with library references
resolved and a corresponding .munch file.

PROD_HOST += <name>
<nane>_SRC += <srchane>.cC

results in the executable <name> being built for each HOST architecture, <arch>, from a<srcname>.c file. Then <name>
isinstalled into the $(INSTALL_L OCATION)/bin/<arch> directory.

4.6.23.1 Specifying the product name.
Any of the following can be specified:

PROD += <nane>
Product <name> will be created for every target arch.
PROD <oscl ass> += <nane>
Product <name> will be created for al archs of the specified osclass.
PROD DEFAULT += <nane>
Product <name> will be created for any arch that does not have a PROD_<osclass> definition

PROD | OC += <nane>
Product <name> will be created for IOC type archs.
PROD | OC <oscl ass> += <nane>
Product <name> will be created for al 10C type archs of the specified osclass.
PROD_| OC_DEFAULT += <nane>
Product <name> will be created for any 1OC type arch that does not have a PROD_IOC_<osclass>
definition

PROD_HOST += <nane>
Product <name> will be created for HOST type archs.
PROD HOST <oscl ass> += <nane>
Product <name> will be created for all HOST type archs of the specified osclass.
PROD_HOST_DEFAULT += <name>
Product <name> will be created for any HOST type arch that does not have a PROD_HOST_<osclass>
definition

4.6.23.2 Specifying product object file names

Object files which have filenameswith a".0" or ".obj" suffix are defined as follows and can be specified without the suffix
but should have the directory prefix

USR _OBJS += <nane>

Object fileswill be used in builds of al products and libraries
USR _OBJS <oscl ass> += <nane>

Object fileswill be used in builds of all products and libraries for archs with the specified osclass.
USR_OBJS DEFAULT += <name>

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 55

Chapter 4: EPICS Build Facility
Makefile definitions

Object files will be used in builds of all products and libraries for archs without a USR_OBJS <osclass>
definition specified.
PROD_OBJS += <nane>
Object fileswill be used in builds of all products
PROD _OBJS <oscl ass> += <nane>
Object fileswill be used in builds of all products for archs with the specified osclass.
PROD_OBJS DEFAULT += <name>
Object files will be used in builds of all products for archs without a PROD_OBJS <osclass> definition
specified.
<pr odnane>_OBJS += <nane>
Object fileswill be used for al builds of the named product
<prodnane>_0BJS <oscl ass> += <nane>
Object fileswill be used in builds of the named product for archs with the specified osclass.
<prodnane>_0BJS_DEFAULT += <nane>
Object files will be used in builds of the named product for archs without a <prodname>_OBJS <osclass>
definition specified.
Combined object files, from R3.13 built modules and applications which have file names that do not include a ".0" or
".0bj" suffix (e.g. xyzLib) are defined as follows:

USR OBJLI BS += <nane>
Combined object files will be used in builds of all libraries and products.
USR _OBJLI BS <oscl ass> += <nane>
Combined object files will be used in builds of all libraries and products for archs of the specified osclass.
USR_OBJLI BS_DEFAULT += <name>
Combined object files will be used in builds of al libraries and products for archs without a
USR_OBJLIBS_<osclass> definition specified.

PROD_OBJLI BS += <name>
Combined object files will be used in builds of all products.
PROD _OBJLI BS <oscl ass> += <nane>
Combined object files will be used in builds of all products for archs of the specified osclass.
PROD_OBJLI BS_DEFAULT += <name>
Combined object files will be used in builds of all products for archs without a PROD_OBJLIBS <osclass>
definition specified.

<prodnane>_OBJLI BS += <nane>
Combined object files will be used for all builds of the named product.
<pr odnane>_O0OBJLI BS_<oscl ass> += <nane>
Combined object files will be used in builds of the named product for archs with the specified osclass.
<prodnane>_C0BJLI BS_DEFAULT += <nane>
Combined object files will be used in builds of the named product for archs without a
<prodname>_OBJLIBS_<osclass> definition specified.

<prodnane>_LDOBJS += <name>
Object fileswill be used for al builds of the named product. (deprecated)
<prodnane>_LDOBJS_<oscl ass> += <name>
Object fileswill be used in builds of the name product for archs with the specified osclass. (deprecated)
<prodnane>_LDOBJS_DEFAULT += <nane>
Object files will be used in builds of the product for archs without a <prodname> L DOBJS <osclass>
definition specified. (deprecated)

56 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Makefile definitions

4.6.23.3 Specifying product source file names
Source file names, which must have a suffix, are defined as follows:

SRCS += <nane>
Source fileswill be used for all defined libraries and products.
SRCS <oscl ass> += <nane>
Source fileswill be used for all defined libraries and products for all archs of the specified osclass.
SRCS DEFAULT += <nane>
Source files will be used for al defined libraries and products for any arch that does not have a
SRCS <osclass> definition

USR _SRCS += <nane>
Source fileswill be used for all products and libraries.
USR SRCS <oscl ass> += <nane>
Source fileswill be used for all defined products and libraries for all archs of the specified osclass.
USR SRCS DEFAULT += <nane>
Source files will be used for all defined products and libraries for any arch that does not have a
USR_SRCS <osclass> definition

PROD SRCS += <nane>
Source fileswill be used for &l products.
PROD SRCS <oscl ass> += <nane>
Source fileswill be used for all defined products for all archs of the specified osclass.
PROD _SRCS DEFAULT += <nane>
Source files will be used for all defined products for any arch that does not have a PROD_SRCS <osclass>
definition

<pr odnane>_SRCS += <nane>
Source file will be used for the named product.
<pr odnane>_SRCS <oscl ass> += <nane>
Source fileswill be used for named product for all archs of the specified osclass.
<pr odnane>_SRCS DEFAULT += <name>
Source fileswill be used for named product for any arch that does not have a<prodname>_SRCS <osclass>
definition

4.6.23.4 Specifying libraries to be linked when creating the product

For each library name specified which is not a system library nor alibrary from EPICS _BASE, a<name>_DIR definition
must be present in the Makefile to specify the location of the library.

Library names, which must not have adirectory and "lib" prefix nor a suffix, are defined as follows:

PROD LI BS += <nane>
Librariesto be used when linking all defined products.
PROD LI BS <oscl ass> += <nane>
Librariesto be used or all archs of the specified osclass when linking all defined products.
PROD_LI BS_DEFAULT += <nane>
Libraries to be used for any arch that does not have a PROD_LIBS <osclass> definition when linking all
defined products.

USR LI BS += <nane>
Librariesto be used when linking all defined products.
USR LI BS <oscl ass> += <nane>
Librariesto be used or all archs of the specified osclasswhen linking all defined products.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 57

Chapter 4: EPICS Build Facility
Makefile definitions

USR_LI BS_DEFAULT += <nane>
Libraries to be used for any arch that does not have a USR_LIBS <osclass> definition when linking al
defined products.

<prodnane>_LI BS += <nane>
Librariesto be used for linking the named product.
<prodnane>_LI BS_<oscl ass> += <nane>
Librarieswill be used for all archs of the specified osclass for linking named product.
<pr odnane>_LIBS DEFAULT += <name>
Librariesto be used for any arch that does not have a<prodname>_LIBS <osclass> definition when linking
named product.

SYS_PROD LI BS += <name>
System libraries to be used when linking all defined products.
SYS PRCD LI BS <oscl ass> += <nane>
System libraries to be used for all archs of the specified osclass when linking all defined products.
SYS_PROD LI BS DEFAULT += <nanme>
System libraries to be used for any arch that does not have a PROD_LIBS <osclass> definition when
linking all defined products.

<pr odnane>_SYS LI BS += <name>
System libraries to be used for linking the named product.
<prodnane>_SYS LI BS <oscl ass> += <nane>
System libraries will be used for al archs of the specified osclass for linking named product.
<prodnane>_SYS LI BS DEFAULT += <name>
System libraries to be used for any arch that does not have a <prodname>_LIBS _<osclass> definition when
linking named product.

4.6.23.5 The order of dependant libraries

Dependant library names appear in the following order on a product link line:

1. <prodname>_LIBS

2. <prodname>_LIBS <osclass> or <prodname>_LIBS DEFAULT
3. PROD_LIBS

4. PROD_LIBS <osclass> or PROD_LIBS DEFAULT

5.
6
7
8
9

USR_LIBS

. USR_LIBS <osclass> or USR_LIBS DEFAULT

. <prodname>_SYS LIBS

. <prodname>_SYS LIBS <osclass> or <prodname>_SYS LIBS DEFAULT
. PROD_SYS LIBS

10.
11
12.

PROD_SYS LIBS <osclass> or PROD_SYS LIBS DEFAULT
USR_SYS LIBS
USR_SYS LIBS <osclass> or USR_SYS LIBS DEFAULT

4.6.23.6 Specifying product version number

On WIN32 only a product version number can be specified as follows:

PRCD VERSI ON += <versi on>

Thisresultsin "/version:$(PROD_VERSION)" link option.

58

EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Makefile definitions

4.6.23.7 Product static builds

Product executables can be linked with either archive versions or shared versions of EPICS libraries. Shared versions of
system libraries will always be used in product linking. The definition of STATIC_BUILD (YESNO) in base/configure/
CONFIG_SITE determines which EPICS libraries to use. When STATIC_BUILD is NO, shared libraries will be used.
(SHARED_LIBRARIES must be set to YES.) The default definition for STATIC_BUILD in the EPICS base
CONFIG_SITE distribution file is NO. A STATIC_BUILD definition in a Makefile will override the definition in
CONFIG_SITE.Static builds may not be possible on all systems. For static builds, al nonsystem libraries must have an
archive version, and this may not be true form al libraries.

4.6.24 Test Products

Test products are product executables that are created but not installed into $(INSTALL_LOCATION)/bin/<arch>
directories. Test product libraries, source, and object files are specified in exactly the same way as regular products.

Any of the following can be specified:

TESTPROD += <nane>
Test product <name> will be created for every target arch.
TESTPROD_<oscl ass> += <nane>
Test product <name> will be created for all archs of the specified osclass.
TESTPROD_DEFAULT += <nane>
Test product <name> will be created for any arch that does not have a TESTPROD_<osclass> definition

TESTPROD_I OC += <nane>
Test product <name> will be created for 10C type archs.
TESTPROD | OC <oscl ass> += <nane>
Test product <name> will be created for al 10C type archs of the specified osclass.
TESTPROD_| OC_DEFAULT += <nane>
Test product <name> will be created for any 10C type arch that does not have a
TESTPROD_|OC_<osclass> definition

TESTPROD_HOST += <nane>
Test product <name> will be created for HOST type archs.
TESTPROD_HOST_<oscl ass> += <nane>
Test product <name> will be created for all HOST type archs of the specified osclass.
TESTPROD_HOST_DEFAULT += <nane>
Test product <name> will be created for any HOST type arch that does not have a
TESTPROD_HOST _<osclass> definition

4.6.25 Test Scripts

Test scripts are perl scripts whose namesendin . t that get executed to satisfy the r unt est s make target. They are run
by the perl Test::Harness library, and should send output to stdout following the Test Anything Protocol. Any of the
following can be specified, although only TESTSCRIPTS HOST is currently useful:

TESTSCRI PTS += <nane>
Test script <name> will be created for every target arch.
TESTSCRI PTS_<oscl ass> += <nane>
Test script <name> will be created for all archs of the specified osclass.
TESTSCRI PTS_DEFAULT += <name>
Test script <name> will be created for any arch that does not have a TESTSCRIPTS <osclass> definition

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 59

Chapter 4: EPICS Build Facility
Makefile definitions

TESTSCRI PTS_| OC += <name>
Test script <name> will be created for 10C type archs.
TESTSCRI PTS | OC <oscl ass> += <nane>
Test script <name> will be created for all 10C type archs of the specified osclass.
TESTSCRI PTS_| OC_DEFAULT += <name>
Test script <name> will be created for any I10C type arch that does not have a
TESTSCRIPTS I0C_<osclass> definition

TESTSCRI PTS_HCOST += <name>
Test script <name> will be created for HOST type archs.
TESTSCRI PTS_HOST_<oscl ass> += <nane>
Test script <name> will be created for all HOST type archs of the specified osclass.
TESTSCRI PTS_HOST_DEFAULT += <name>
Test script <name> will be created for any HOST type arch that does not have a
TESTSCRIPTS HOST_<osclass> definition.

If aname in one of the above variables matches aregular executable program name (normally generated as atest product)
with". t " appended, a suitable perl script will be generated that will execute that program directly; this makesit smpleto
run programs that use the epicsUnitTest routinesin libCom. A test script written in Perl with aname ending . pl t will be
copied into the O.<arch> directory with the ending changed to . t ; such scripts will usually use the perl Test::Simple or
Test::Morelibraries.

4.6.26 Miscellaneous Tar gets

A definition of the form:
TARCGETS += <nane>

resultsin the file <name> being built in the O.<arch> directory from existing rules and files in the source directory. These
target files are not installed.

4.6.27 Installing Other Binaries

Definitions of the form:

Bl N_I NSTALLS += <nane>

Bl N_I NSTALLS += <di r >/ <nane>

Bl N_I NSTALLS DEFAULT += <nane>
Bl N_I NSTALLS <oscl ass> += <nane>

will result in the named files being installed to the appropriate $(INSTALL_L OCATION)/bin/<arch> directory. The file
<name> can appear with or without a directory prefix. If the file has a directory prefix e.g. $(EPICS BASE_BIN), it is
copied from the specified location. If adirectory prefix is not present, make will look in the source directory for the file.

4.6.28 Installing Other Libraries

Definitions of the form:

LI B_I NSTALLS += <nane>

LI B_I NSTALLS += <di r >/ <nane>

LI B_I NSTALLS DEFAULT += <nane>
LI B_I NSTALLS <oscl ass> += <nane>

60 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Makefile definitions

result in files being installed to the appropriate $(INSTALL_LOCATION)/lib/<arch> directory. The file <name> can
appear with or without a directory prefix. If thefile has adirectory prefix e.g. $(EPICS_BASE_LIB), it is copied from the
specified location. If adirectory prefix is not present, make will look in the source directory for the file.

4.6.29 Win32 resourcefiles

Definitions of the form:

RCS += <nane> Resource definition script files for al products and libraries.
RCS <oscl ass> += <nane>

PROD RCS += <nane> Resource definition script files for al products.
PROD RCS <oscl ass> += <nane>
PROD_RCS _DEFAULT += <nane>

LI B_RCS += <nane> Resource definition script filesfor al libraries.
LI B_RCS <oscl ass> += <nane>
LI B_RCS_DEFAULT += <nane>

<nanme>_RCS += <nane> Resource definition script files for specified product or library.
<name>_RCS <oscl ass> += <nane>
<nane>_ RCS _DEFAULT += <nanme>

result in resource files (*.resfiles) being created from the specified *.rc resource definition script files and linked into the
prods and/or libraries.

46.30TCL libraries

Definitions of the form:

TCLLI BNAME += <nane>
TCLI NDEX += <nane>

result in the specified tcl files being installed to the $(INSTALL_L OCATION)/lib/<arch> directory.

4.6.31 Java classfiles

Java class files can be created by the javac tool into $(INSTALL_JAVA) or into the O.Common subdirectory, by
specifying the name of the java class file in the Makefile. Command line options for the javac tool can be specified. The
configuration files set the java c option "-sourcepath .:..:../..".

Any of the following can be specified:

JAVA += <name>.java

The <name>.javafile will be used to create the <name>.classfilein the S(INSTALL_JAVA) directory.
TESTJAVA += <name>.java

The <name>.javafiles will be used to create the <name>.class file in the O.Common subdirectory.
USR_JAVACFLAGS += <name>

The javac option <name> will be used on the javac command lines.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 61

Chapter 4: EPICS Build Facility
Makefile definitions

4.6.31.1 Example 1

In this example, three class files are created in $(INSTALL_LOCATION)/javalib/mytest. The javac depreciation flag is
used to list the description of each use or override of a deprecated member or class.

JAVA = mytest/one.java

JAVA = mytest/two.java

JAVA = mytest/threejava
USR_JAVACFLAGS = -deprecation

4.6.31.2 Example 2
In this example, the test.class file is created in the O.Common subdirectory.
TESTJAVA =test.java

4.6.32 Java jar file

A single java jar file can be created using the java jar tool and installed into $(INSTALL_JAVA) (i.e
$(INSTALL_LOCATION)/javalib) by specifying its name, and the names of itsinput filesto be included in the created jar
file. Thejar input file names must appear with adirectory prefix.

Any of the following can be specified:

JAR += <name>

The <name> jar file will be created and installed into the $(INSTALL_JAVA) directory.
JAR_INPUT += <name>

Names of images, audio files and classes files to be included in the jar file.
JAR_MANIFEST += <name>

The preexisting manifest file will be used for the created jar file.
JAR_PACKAGES += <name>

Names of java packages to be installed and added to the created jar file.

4.6.32.1 Example 1

In this example, al the class files created by the current Makefile's "JAVA+=" definitions, are placed into a file named
mytestl.jar. A manifest file will be automatically generated for the jar.

Note: $(INSTALL_CLASSES) is set to $(addprefix $(INSTALL_JAVA)/,$(CLASSES)) in the EPICS base configure
files.

JAR = mytestl.jar
JAR_INPUT = $(INSTALL_CLASSES)

4.6.32.2 Example 2

In this example, three class files are created and placed into anew jar archive file named mytest2.jar. An existing manifest
file, mytest2.mf is put into the new jar file.

JAR = mytest2.jar

JAR_INPUT = $(INSTALL_JAVA)/mytest/one.class
JAR_INPUT = $(INSTALL_JAVA)/mytest/two.class
JAR_INPUT = $(INSTALL_JAVA)/mytest/three.class
JAR_MANIFEST = mytest2.mf

62 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Makefile definitions

4.6.33 Java native method C header files

A C header files for use with java native methods will be created by the javah tool in the O.Common subdirectory by
specifying the name of the header file to be created. The name of the java class file used to generate the header is derived
from the name of the header file. Underscores () are used as a header file name delimiter. Command line options for the
javah tool can be specified.

Any of the following can be specified:

JAVAINC += <name>.h

The <name>.h header file will be created in the O.Common subdirectory.
USR_JAVAHFLAGS += <name>

The javah option <name> will be used on the javah tool command line.

4.6.33.1 Example

In this example, the C header xx_yy_zz.h will be created in the $(COMMON_DIR) subdirectory from the class xx.yy.zz
(i.e. the java class file S(INSTALL_JAVA)/xxlyy/zz.class)). The option "-old" will tell javah to create old JDK1.0 style
header files.

JAVAINC =xx_yy zz.h
USR_JAVAHFLAGS = -old

4.6.34 User Created CONFIG* and RULES* files

Module developers can now create new CONFIG and RULES* files ia a <top> application source directory. These new
CONFIG* or RULES* fileswill be installed into the directory $(INSTALL_L OCATION)/cfg by including lines like the
following Makefileline;

CFG += CONFIG_MY1RULES MY1
The build will install the new files CONFIG_MY 1 and RULES MY 1intothe $(INSTALL_LOCATION)/cfg directory.

Filesin a$(INSTALL_LOCATION)/cfg directory are now included during a build by so that the definitions and rulesin
them are available for use by later src directory Makefiles in the same module or by other modules with a RELEASE line
pointing to the TOP of this module.

4.6.35 User Created File Types

Module developers can now define a new type of file, eg. ABC, so that files of type ABC will beinstalled into a directory
defined by INSTALL_ABC. Thisisdone by creating a new CONFIG<name> file, e.g. CONFIG_ABC, with thefollowing
lines:

FILE_TYPE += ABC
INSTALL_ABC = $(INSTALL_LOCATION)/abc

The INSTALL_ABC directory should be asubdirectory of $(INSTALL_LOCATION). Thefiletype ABC should be target
architecture independent (alh files, medm files, edm files.

Optional rules necessary for files of type ABC should be putinaRULES_ABCfile.

The module developer installs new CONFIG_ABC and RULES_ABC files for the new file type into the directory
$(INSTALL_LOCATION)/cfg by including the following Makefile line:

CFG += CONFIG_ABC RULES ABC
Files of type ABC areinstalled into INSTALL_ABC directory by adding aline like the following to a Makefile.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 63

Chapter 4: EPICS Build Facility
Table of Makefile definitions

ABC += <filenamel> <filename2> <filename3>

Since the files in $(INSTALL_LOCATION)/cfg directory are now included by the base config files, the ABC +=
definition lines are available for use by later src directory Makefiles in the same module or by other modules with a
REL EASE line pointing to the TOP of this module.

4.7 Table of Makefile definitions

Definitions given below containing <osclass> are used when building for target archs of a specific osclass, and the
<osclass> part of the name should be replaced by the desired osclass, e.g. solaris, vxWorks, etc. If a_ DEFAULT setting is
given but a particular <osclass> requires that the default not apply and there are no items in the definition that apply for
that <osclass>, the value "-nil-" should be specified in the relevant Makefile definition.

Build Option Description

Productsto be built (host type archs only)

PRCD

products (names without execution suffix) to build and install. Specify
xyz to build executable xyz on Unix and xyz.exe on WIN32

PROD <oscl ass>

os class specific products to build and install for <osclass> archs only

PROD DEFAULT products to build and install for archs with no PROD_<osclass>
specified
PRCD_| CC products to build and install for ioc type archs

PROD | OC <oscl ass>

os specific products to build and install for ioc type archs

PROD_| OC_DEFAULT

products to build and install for ioc type arch systems with no
PROD_IOC_<osclass> specified

PROD_HOST

products to build and install for host type archs.

PROD_HOST_<oscl ass>

os class specific products to build and install for <osclass> type archs

PROD_HOST_DEFAULT

products to build and install for arch with no PROD_HOST _<osclass>
specified

Test productsto be built

TESTPROD

test products (names without execution suffix) to build but not install

TESTPROD_<oscl ass>

0s class specific test products to build but not install

TESTPROD_DEFAULT

test products to build but not install for archs with no
TESTPROD_<osclass> specified

TESTPROD_| OC

test products to build and install for ioc type archs

TESTPROD | OC <oscl ass>

os specific test products to build and install for ioc type archs

TESTPROD_| OC_DEFAULT

test products to build and install for ioc type arch systems with no
TESTPROD_IOC_<osclass> specified

TESTPROD_HOST

testproducts to build and install for host type archs.

64

EPICS Application Developer’'s Guide

1/5/09

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option Description
TESTPROD_HOST_<oscl ass> 0s class specific testproducts to build and install for <osclass> type
archs
TESTPROD HOST DEFAULT test products to build and install for arch with no

TESTPROD_HOST_<osclass> specified

Test scriptsto be built

TESTSCRI PTS test scripts (names with .t suffix) to build but not install

TESTSCRI PTS_<oscl ass> 0s class specific test scripts to build but not install

TESTSCRI PTS_DEFAULT test scripts to build but not install for archs with no
TESTSCRIPTS_<osclass> specified

TESTSCRI PTS_I OC test scriptsto build and install for ioc type archs

TESTSCRI PTS_|I OC_<oscl ass> o0s specific test scriptsto build and install for ioc type archs

TESTSCRI PTS_| OC_DEFAULT test scripts to build and install for ioc type arch systems with no
TESTSCRIPTS _|0C_<osclass> specified

TESTSCRI PTS_HOST test scriptsto build and install for host type archs.

TESTSCRI PTS_HOST_<oscl ass> os class specific testscripts to build and install for <osclass> type archs

TESTSCRI PTS_HOST_DEFAULT test scripts to build and install for arch with no

TESTSCRIPTS HOST_<osclass> specified

Librariesto be built

LI BRARY name of library to build and install. The name should NOT include a
prefix or extension e.g. specify Cato build libCa.aon Unix, Calib or
Ca.dll on WIN32

LI BRARY_<oscl ass> os specific libraries to build and install

LI BRARY_DEFAULT libraries to build and install for archs with no LIBRARY _<osclass>
specified

LI BRARY_I OC name of library to build and install for ioc type archs. The name should

NOT include a prefix or extension e.g. specify Cato build libCa.aon
Unix, Calib or Ca.dll on WIN32

LI BRARY_| OC_<oscl ass> os specific libraries to build and install for ioc type archs

LI BRARY_| OC_DEFAULT librariesto build and install for ioc type arch systems with no
LIBRARY_IOC_<osclass> specified

LI BRARY_HOST name of library to build and install for host type archs. The name should
NOT include a prefix or extension, e.g. specify Cato build libCa.aon
Unix, Calib or Ca.dll on WIN32

LI BRARY_HOST_<oscl ass> os class specific libraries to build and install for host type archs

LI BRARY_HOST_DEFAULT librariesto build and install for host type arch systems with no
LIBRARY_HOST_<osclass> specified

SHARED LI BRARI ES build shared libraries? Must be YES or NO

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 65

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

SHRLI B_VERSI ON

shared library version number

Loadablelibrariesto be built

LOADABLE_LI BRARY

name of loadable library to build and install. The name should NOT
include a prefix or extension e.g. specify Cato build libCa.so on Unix
and Ca.dll on WIN32

LOADABLE_LI BRARY_<oscl ass>

os specific loadable libraries to build and install

LOADABLE_LI BRARY_DEFAULT

|loadable libraries to build and install for archs with no
LOADABLE_LIBRARY _<osclass> specified

LOADABLE_LI BRARY_HOST

name of loadable library to build and install for host type archs. The
name should NOT include a prefix or extension, e.g. specify test to build
libtest.so on Unix and test.dll on WIN32

LOADABLE_LI BRARY_ HOST_<oscl ass>

os class specific loadable libraries to build and install for host type archs

LOADABLE_LI BRARY_HOST_DEFAULT

loadable librariesto build and install for host type arch systems with no
LOADABLE_LIBRARY_HOST_<osclass> specified

Combined object files (vxWor ks only)

OoBJLIB

name of acombined object file library and corresponding munch file to
build and install. The name will have a Library suffix appended

OBJLI B_vxWor ks

same as OBJLIB

OBJLI B_SRCS

source files to build the OBJLIB

OBJLI B_OBIS

object filesto includein OBJLIB

Product and library sourcefiles

SRCS

source filesto build all PRODs and LIBRARY's

SRCS_<oscl ass>

osclass specific source files to build all PRODs and LIBRARY's

SRCS_DEFAULT source file to build all PRODs and LIBRARY s for archs with no
SRCS_<osclass> specified
USR_SRCS source filesto build all PRODs and LIBRARY's

USR_SRCS_<oscl ass>

osclass specific source filesto build all PRODs and LIBRARY's

USR_SRCS_DEFAULT

source file to build all PRODs and LIBRARY s for archs with no
SRCS_<osclass> specified

PROD_SRCS

source filesto build all PRODs

PROD SRCS <oscl ass>

osclass specific source files to build all PRODs

PROD_SRCS_DEFAULT

source files needed to build PRODs for archs with no SRCS_<osclass>
specified

LI B_SRCS

source files for building LIBRARY (e.g. LIB_SRCS=lacIb.clc.c)

LI B_SRCS_<oscl ass>

os-specific library source files

LI B_SRCS_DEFAULT

library sourcefiles for archs with no LIB_SRCS_<osclass> specified

66

EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

LI BSRCS

source filesfor building LIBRARY (deprecated)

LI BSRCS_<oscl ass>

os-specific library source files (deprecated)

LI BSRCS_DEFAULT

library sourcefiles for archs with no LIBSRCS_<osclass> specified
(deprecated)

<nanme>_SRCS

source files to build a specific PROD or LIBRARY

<name>_SRCS_<oscl ass>

os specific source files to build a specific PROD or LIBRARY

<nanme>_SRCS DEFAULT

source files needed to build a specific PROD or LIBRARY for archs
with no <prod>_SRCS_<osclass> specified

Product and library object files

USR_OBJS

object files, specified without suffix, to build all PRODs and LIBRARY's

USR_OBJS <oscl ass>

osclass specific object files, specified without suffix, to build all PRODs
and LIBRARYs

USR_OBJS_DEFAULT

object files, specified without suffix, needed to build PRODs and
LIBRARY s for archs with no OBJS_<osclass> specified

PROD_OBJS

object files, specified without suffix, to build all PRODs

PROD _OBJS <oscl ass>

osclass specific object files, specified without suffix, to build all PRODs

PROD_OBJS_DEFAULT

object files, specified without suffix, needed to build PRODs for archs
with no OBJS_<osclass> specified

LI B_OBJS

object files, specified without suffix, for building all LIBRARY's (e.g.
LIB_OBJS+=$(AB_BIN)/la$(AB_BIN)/Ib)

LI B_OBJS <oscl ass>

os-specific library object files, specify without suffix,

LI B_OBJS DEFAULT

library object files, specified without suffix, for archs with no
LIB_OBJS <osclass> specified

<name>_0BJS

object files, specified without suffix, to build a specific PROD or
LIBRARY

<name>_0BJS <oscl ass>

os specific object files, specified without suffix, to build a specific
PROD or LIIBRARY

<nanme>_C0BJS_DEFAULT

object files, without suffix, needed to build a specific PROD or
LIBRARY for archs with no <prod>_OBJS _<osclass> specified

Product and library R3.13 combined object files

USR_OBJLI BS

combined object files with filenames that do not have a suffix, needed
for building all PRODs and LIBRARY s (e.g.
USR_OBJLIBS+=$(XYZ_BIN)/xyzLib)

USR_OBJLI BS_<oscl ass>

os-specific combined object fileswith filenamesthat do not have a suffix
for building all PRODs and LIBRARY's

USR_OBJLI BS_DEFAULT

combined object files with filenames that do not have a suffix, for archs
with no USR_OBJLIBS <osclass> specified for building all PRODs
and LIBRARY's

EPICS Release 3.14.10

EPICS Application Developer’'s Guide 67

Chapter 4: EPICS Build Facility

Table of Makefile definitions

Build Option

Description

PRCD_CBJLI BS

combined object files with filenames that do not have a suffix, needed
for building all PRODs (e.g. PROD_OBJLIBS+=$(XYZ_BIN)/xyzLib)

PROD OBJLI BS <oscl ass>

os-specific combined object fileswith filenames that do not have a suffix
for building all PRODs

PROD_CBJLI BS_DEFAULT

combined object files with filenames that do not have a suffix, for archs
with no PROD_OBJLIBS_<osclass> specified for building all PRODs

LI B_OBJLI BS

combined object files with filenames that do not have a suffix, needed
for building all LIBRARYs (e.g. LIB_OBJLIBS+=$(XYZ_BIN)/
xyzLib)

LI B_OBJLI BS <oscl ass>

os-specific combined object fileswith filenamesthat do not have a suffix
for building all LIBRARY's

LI B_OBJLI BS DEFAULT

combined object files with filenames that do not have a suffix, for archs
withno LIB_OBJLIBS <osclass> specified for building all LIBRARY's

<nanme>_C0BJLI BS

combined object fileswith filenames that do not have a suffix, needed to
build a specific PROD or LIBRARY

<nane>_OBJLI BS_<oscl ass>

os specific combined object files with filenames that do not have a
suffix, to build a specific PROD or LI[BRARY

<name>_OBJLI BS_DEFAULT

combined object fileswith filenames that do not have a suffix, needed to
build a specific PROD or LIBRARY for archswith no
<name>_OBJLIBS_<osclass> specified

<nanme>_LDOBJS

combined object fileswith filenames that do not have a suffix, needed to
build a specific PROD or LIBRARY (deprecated)

<nanme>_LDOBJS <oscl ass>

os specific combined object files with filenames that do not have a
suffix, to build a specific PROD or LI|BRARY (deprecated)

<name>_LDOBJS_DEFAULT

combined object fileswith filenames that do not have a suffix, needed to
build a specific PROD or LIBRARY for archs with no
<name>_LDOBJS <osclass> specified (deprecated)

Product and library dependant libraries

<name>_DI R

directory to search for the specified lib. (For libs listed in all
PROD_LIBS, LIB_LIBS, <name>_LIBSand USR_LIBS isted below)
System libraries do not heed a<name>_dir definition.

USR LI BS

load libraries (e.g. Xt X11) for al products and libraries

USR_LI BS <oscl ass>

os specific load libraries for all makefile links

USR LI BS DEFAULT

load libraries for systems with no USR_LIBS_<osclass> specified libs

<nane>_LI BS

named prod or library specific Id libraries (e.g. probe_LIBS=X11 Xt)

<nanme>_LI BS <oscl ass>

os-specific libs needed to link named prod or library

<name>_LI BS_DEFAULT

libs needed to link named prod or library for systems with no
<name>_LIBS <osclass> specified

PRCD_LI BS

libs needed to link every PROD

68

EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

PROD LI BS <oscl ass>

os-specific libs needed to link every PROD

PRCD_LI BS_DEFAULT

libs needed to link every PROD for archs with no
PROD_LIBS <osclass> specified

LI B_LI BS

librariesto be linked with every library being created

LI B_LI BS_<oscl ass>

os class specific libraries to be linked with every library being created

LI B_LI BS_DEFAULT

libraries to be linked with every library being created for archs with no
LIB_LIBS_<osclass> specified

USR SYS LI BS

system libraries (e.g. Xt X11) for al products and libraries

USR_SYS LI BS <oscl ass>

0s class specific system libraries for all makefile links

USR_SYS_LI BS_DEFAULT

system libraries for archswith no USR_SYS LI BS <oscl ass>
specified

<nanme>_SYS LI BS

named prod or library specific system Id libraries

<name>_SYS LI BS <oscl ass>

0s class specific system libs needed to link named prod or library

<name>_SYS LI BS DEFAULT

system libs needed to link named prod or library for systems with no
<nanme>_SYS LI BS_<oscl ass> specified

PROD_SYS LI BS

system libs needed to link every PROD

PROD_SYS LI BS <oscl ass>

0s class specific system libs needed to link every PROD

PROD_SYS_LI BS_DEFAULT

system libs needed to link every PROD for archs with no
PROD_SYS _LIBS <osclass> specified

LI B_SYS_LIBS

system libraries to be linked with every library being created

LI B_SYS LI BS <oscl ass>

os class specific system libraries to be linked with every library being
created

LI B_SYS LI BS_DEFAULT

system libraries to be linked with every library being created for archs
withno LIB_SYS_LIBS <osclass> specified

SYS_PROD LI BS

system libs needed to link every PROD for all systems (deprecated)

SYS PROD LI BS <oscl ass>

os class specific system libs needed to link every PROD (deprecated)

SYS_PROD LI BS_DEFAULT

system libs needed to link every PROD for systems with no
SYS PROD_LIBS <osclass> specified (deprecated)

Compiler flags

USR_CFLAGS

C compiler flags for al systems

USR_CFLAGS <T_A>

target architecture specific C compiler flags

USR_CFLAGS_<oscl ass>

os class specific C compiler flags

USR _CFLAGS_DEFAULT

C compiler flags for archs with no USR_CFLAGS_<osclass> specified

<name>_CFLAGS

file specific C compiler flags (e.g. xxxRecord_CFLAGS=-g)

<nanme>_CFLAGS <T_A>

file specific C compiler flags for a specific target architecture

EPICS Release 3.14.10

EPICS Application Developer’'s Guide 69

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

<name>_CFLAGS_<oscl ass>

file specific C compiler flags for a specific os class

USR_CXXFLAGS

C++ compiler flags for all systems (e.g. xyxMain_CFLAGS=-DSDDS)

USR_CXXFLAGS_<T_A>

target architecture specific C++ compiler flags

USR_CXXFLAGS <oscl ass>

os-specific C++ compiler flags

USR_CXXFLAGS_DEFAULT

C++ compiler flags for systems with no USR_CXXFLAGS <osclass>
specified

<nanme>_CXXFLAGS

file specific C++ compiler flags

<nanme>_CXXFLAGS <T_A>

file specific C++ compiler flags for a specific target architecture

<name>_CXXFLAGS <oscl ass>

file specific C++ compiler flags for a specific osclass

USR_CPPFLAGS

C pre-processor flags (for all makefile compiles)

USR_CPPFLAGS_<T_A>

target architecture specific cpp flags

USR_CPPFLAGS <oscl ass>

os specific cpp flags

USR_CPPFLAGS_DEFAULT

cpp flags for systems with no USR_CPPFLAGS _<osclass> specified

<nanme>_CPPFLAGS

file specific C pre-processor flags
(e.g. xxxRecord CPPFLAGS=-DDEBUG)

<nanme>_CPPFLAGS <T_A>

file specific cpp flags for a specific target architecture

<name>_CPPFLAGS <oscl ass>

file specific cpp flags for a specific os class

USR_| NCLUDES

directories, with -l prefix, to search for include files
(e.g. -1$(EPICS_EXTENSIONS_INCLUDE))

USR_| NCLUDES <oscl ass>

directories, with -1 prefix, to search for include files for a specific os
class

USR_| NCLUDES_DEFAULT

directories, with -1 prefix, to search for include files for systems with no
<name>_INCLUDES <osclass> specified

<nanme>_| NCLUDES

directories, with -1 prefix, to search for include files when building a
specific object file (e.g. -IS(MOTIF_INC))

<name>_| NCLUDES_<T_A>

file specific directories, with -1 prefix, to search for include files for a
specific target architecture

<name>_| NCLUDES_<oscl ass>

file specific directories, with -1 prefix, to search for include files for a
specific os class

HOST_WARN Are compiler warning messages desired for host type builds? (YES or
NO) (default is YES)

CROSS_WARN C cross-compiler warning messages desired (Y ES or NO) (default Y ES)

HOST_OPT Is host build compiler optimization desired (default is NO optimization)

CROSS_OPT I's cross-compiler optimization desired (Y ES or NO) (default is NO
optimization)

CWPLR C compiler selection, TRAD, ANSI or STRICT (default is STRICT)

70 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option Description

CXXCVPLR C++ compiler selection, NORMAL or STRICT (default is STRICT)
Linker options

USR_LDFLAGS linker options (for all makefile links)

USR_LDFLAGS <oscl ass>

os specific linker options (for all makefile links)

USR_LDFLAGS_DEFAULT

linker options for systems with no USR_LDFLAGS_<osclass>
specified

PROD_LDFLAGS

prod linker options

PROD_LDFLAGS <oscl ass>

os specific prod linker options

PROD_LDFLAGS_DEFAULT

prod linker options for systems with no PROD_LDFLAGS <osclass>
specified

LI B_LDFLAGS

library linker options

LI B_LDFLAGS <oscl ass>

os specific library linker options

LI B_LDFLAGS_DEFAULT

library linker options for systemswith no LIB_LDFLAGS <osclass>
specified

<name>_LDFLAGS

prod or library specific linker options

<name>_LDFLAGS_<oscl ass>

prod or library specific linker flags for a specific os class

<name>_ LDFLAGS DEFAULT

linker options for systems with no <name>_L DFLAGS_<osclass>
specified

STATI C_BU LD

Is tatic build desired (YES or NO) (default is NO). On win32 if
STATIC_BUILD=YES then set SHARED_LIBRARIES=NO)

Header filesto beinstalled

I NC

list of includefilesto install into $(INSTALL_DIR)/include

I NC_<oscl ass>

os specific includes to installed under $(INSTALL_DIR)/include/os/
<osclass>

I NC_DEFAULT

include filesto install where no INC_<osclass> is specified

Perl, csh, tcl etc. script installation

SCRI PTS

scriptsto install for all systems

SCRI PTS_<oscl ass>

os-specific scriptsto install

SCRI PTS_DEFAULT

scriptsto install for systems with no SCRIPTS_<osclass> specified

SCRI PTS_I OC

scriptsto install for ioc type archs.

SCRI PTS | OC <oscl ass>

0s specific scriptsto install for ioc type archs

SCRI PTS_| OC_DEFAULT

scriptsto install for ioc type arch systems with no
SCRIPTS_IOC_<osclass> specified

SCRI PTS_HOST

scriptsto install for host type archs. T

EPICS Release 3.14.10

EPICS Application Developer’'s Guide

71

Chapter 4: EPICS Build Facility

Table of Makefile definitions

Build Option

Description

SCRI PTS_HOST _<oscl ass>

os class specific scriptsto install for host type archs

SCRI PTS_HOST_DEFAULT

scriptsto install for host type arch systems with no
OBJS_HOST_<osclass> specified

TCLLI BNAME list of tcl scriptsto install into $(INSTALL_DIR)/lib/<osclass> (Unix
hosts only)
TCLI NDEX name of tcl index file to create from TCLLIBNAME scripts
. ' The namesin the following OBJS definitions should NOT include a
Object files . .
suffix (.o or.obj).
oBJS object filesto build and install for al system.

OBJS _<oscl ass>

os-specific object filesto build and install.

OBJS_DEFAULT object filesto build and install for systems with no OBJS <osclass>
specified.
oBJS I CC object filesto build and install for ioc type archs.

OBJS | OC <oscl ass>

os specific object filesto build and install for ioc type archs

OBJS_| OC_DEFAULT

object filesto build and install for ioc type arch systems with no
OBJS 10C_<osclass> specified

OBJS_HOST

object filesto build and install for host type archs. T

OBJS_HOST_<oscl ass>

os class specific object files to build and install for host type archs

OBJS_HOST_DEFAULT

object files to build and install for host type arch systems with no
OBJS HOST_<osclass> specified

Documentation

DOCS text filesto be installed into the $(INSTALL_DIR)/doc directory

HTMLS_DI R name install Hypertext directory namei.e. $(INSTALL_DIR)/html/
$HTMLS_DIR)

HTMLS hypertext files to be installed into the $(INSTALL_DIR)/html/

$(HTMLS_DIR) directory

TEMPLATES_DI R

template directory to be created as $(INSTALL_DIR)/templates/
$(TEMPLATE_DIR)

TEMPLATES template filesto beinstalled into (TEMPLATE_DIR)
Database Definition files

DBD database definition files to be installed or created and installed into
$(INSTALL_DBD).

DBDI NC names, without suffix, of menus or record database definitions and
headers to be installed or created and installed.

USR_DBDFLAGS optional flags for dbExpand. Currently only include path (-I <path>)
and macro substitution (-S <substitution>) are supported.

72 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option Description
DBD_| NSTALLS files from specified directory to install into $(INSTALL_DBD) (e.g.
DBD_INSTALLS = $(APPNAME)/dbd/test.dbd
Database Files
DB database files to be installed or created and installed into
$(INSTALL_DB).
DB _| NSTALLS files from specified directory to install into $(INSTALL_DB) (e.g.
DB_INSTALLS = $(APPNAME)/db/test.db
USR_DBFLAGS optional flags for msi (EPICS Macro Substitution Tool)

Optionsfor other programs

YACCOPT yacc options
LEXOPT lex options
SNCFLAGS state notation language, snc, options

<name>_SNCFLAGS

product specific state notation language options

E2DB_FLAGS e2db options
SCH2EDI F_FLAGS sch2edif options
RANLI BFLAGS ranlib options
USR_ARFLAGS ar options

Facilitiesfor building Java programs

JAVA names of Java source files to be built and installed

TESTJAVA names of Java source filesto be built

JAVAI NC names of C header file to be created in O.Common subdirectory
JAR name of Jar file to be built

JAR | NPUT names of filesto beincluded in JAR

JAR_NMANI FEST name of manifest file for JAR

USR_JAVACFLAGS

javac tool options

USR_JAVAHFLAGS

javah tool options

Facilities for Windows 95/NT resource (.rc) files

RCS

resource files (<name>.rc) needed to build every PROD and LIBRARY

RCS_<oscl ass>

resource files (<name>.rc) needed to build every PROD and LIBRARY
for ioc type archs

RCS_DEFAULT

resource files needed to build every PROD and LIBRARY for ioc type
arch systems with no RCS_<osclass> specified

<name>_RCS

resource files needed to build a specific PROD or LIBRARY

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 73

Chapter 4: EPICS Build Facility
Table of Makefile definitions

Build Option

Description

<name>_RCS_<oscl ass>

os specific resource files to build a specific PROD or LIBRARY

<nanme>_RCS_DEFAULT

resource files needed to build a specific PROD or LIBRARY for ioc
type arch systems with no RCS_<osclass> specified

Other definitions:

USR_VPATH

list of directories

Bl N_I NSTALLS

files from specified directories to be installed into $(INSTALL_BIN)
(e.g. BIN_INSTALLS = $(EPICS_BASE_BIN)/aiRecord$(OBJ))

Bl N_I NSTALLS <oscl ass>

os class specific files from specified directories to be installed into
$(INSTALL_BIN)

Bl N_I NSTALLS DEFAULT

filesfrom specified directoriesto beinstalled into $(INSTALL_BIN) for
target archs with no BIN_INSTALLS_<osclass> specified

LI B_I NSTALLS

files from specified directories to be installed into $(INSTALL_LIB)

LI B_I NSTALLS <oscl ass>

os class specific files from specified directories to be installed into
$(INSTALL_LIB)

LI B_| NSTALLS DEFAULT

filesfrom specified directoriesto beinstalled into $(INSTALL_LIB) for
target archswith no LIB_INSTALLS_<osclass> specified

TARGETS

files to create but not install

I NSTALL_LOCATI ON

installation directory (defaults to $(TOP))

74

EPICS Application Developer’'s Guide

1/5/09

Chapter 4: EPICS Build Facility
Configuration Files

4.8 Configuration Files

4.8.1 Base Configure Directory

The base/configure directory has the following directory structure:

base/
configure/
os/
t ool s/

4.8.2 Base Configure File Descriptions

The configure files contain definitions and make rules to be included in the various makefil es.

CONFI G Cr ossCommon
Definitions for al hosts and all targets for a cross build (host different than target).
CONFI G. gnuConmon
Definitions for al hosts and all targets for builds using the gnu compiler.
CONFI G_ADDONS
Definitions which setup the variabl es that have <osclass> and DEFAULT options.
CONFI G_APP_I NCLUDE
Definitions to generate include, bin, lib, perl module, db, and dbd directory definitions for RELEASE <top>s.
CONFI G_BASE
EPICS base specific definitions.
CONFI G_BASE_VERSI ON
Definitions for the version number of EPICS base. This file is used for creating epicsVersion.h which is installed
into base/include.
CONFI G_COVIVON
Definitions common to al builds.
CONFI G_ENV
Default definitions of the EPICS environment variables. Thisfile is used for creating envData.c which isincluded
in the Com library.
CONFI G_FI LE_TYPE
Definitionsto allow user created file types.
CONFI G_SI TE
File in which you add to or modify make variablesin EPICS base. A definition normally overriddenis:
CROSS_COWPI LER_TARGET_ARCHS =
CONFI G_SI TE_ENV
Defaults for site specific definitions of EPICS environment variables. Thisfileisused for creating envData.c which
isincluded in the Com library.
CONFI G
Include statements for al the other configure files. You can override any definitions in other CONFIG* files by
placing override definitions at the end of thisfile.
RELEASE
Specifies the location of external products such as Tornado Il and external <tops> such as EPICS base.
RULES
Thisfile just includes the appropriate rules configuration file.
RULES. Db
Rules for building and installing database and database definition files. Databases generated from templates and/or
CapFast schematics are supported.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 75

Chapter 4: EPICS Build Facility
Configuration Files

RULES. i oc
Rules which alow building in the iocBoot/<iocname> directory of a makeBaseApp created ioc application.
RULES_ARCHS
Definitions and rules which allow building the make target for each target architecture.
RULES_BUI LD
Build rules for the Makefiles
RULES_DI RS
Definitions and rules which allow building the make targetsin each subdirectory. Thisfileisincluded by Makefiles
in directories with subdirectories to be built.
RULES_EXPAND
Definitions and rules to use expandVars.pl to expand @VAR@ variablesin afile.
RULES_FI LE_TYPE
Definitions and rules to allow user created CONFIG* and RULES* files and rules to allow user created file types.
RULES_JAVA
Definitions and rules which alow building java class files and javajar files.
RULES_TARGET
Makefile code to create target specific dependency lines for libraries and product targets.
RULES_TOP
Rules specific to a<top> level directory e.g. uninstall and tar. It also includesthe RULES_DIRSfile.
Makefil e
Definitions to allow creation of CONFIG_APP_INCLUDE and ingtalation of the CONFIG* files into the
$(INSTALL_LOCATION) directory.

4.8.3 Base configure/os File Descriptions

The configure/os directory contains os specific make definitions. The naming convention for the files in this directory is
CONFIG.<host>.<target> where <host> is either the arch for a specific host system or Common for all supported host
systems and <target> is either the arch for a specific target system or Common for all supported target systems.

For example, the file CONFIG.Common.vxWorks-pentium will contain make definitions to be used for builds on all host
systems when building for a vxWorks-pentium target system.

Also, if agroup of host or target files have the same make definitions these common definitions can be moved to anew file
which isthen included in each host or target file. An example of thisisall Unix hosts which have common definitionsin a
CONFIG.UnixCommon.Common file and all vxWorks targets with definitions in CONFIG.Common.vxWorksCommon.

The base/configure/os directory contains the following os-arch specific definitions

CONFI G. <host >. <t ar get >

Specific host-target build definitions
CONFI G Conmon. <t ar get >

Specific target definitions for al hosts
CONFI G <host >. Conmon

Specific host definitions for all targets
CONFI G Uni xCormon. Conmon

Definitions for Unix hosts and all targets
CONFI G <host >. vxWor ksConmon

Specific host definitions for all vx targets
CONFI G_COWPAT

R3.13 arch compatibility definitions
CONFI G_SI TE. <host >. <t ar get >

Site specific host-target definitions
CONFI G_SI TE. Conmon. <t ar get >

Site specific target definitions for al hosts

76 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Build Documentation Files

CONFI G_SI TE. <host >. Cormon
Site specific host definitions for all targets

4.8.4 Base src/tool File Descriptions

The src/tools directory contains Perl script tools used for the build. The are installed by the build into
$(INSTALL_LOCATION)/bin/$(T_A) for Host type target archs. The tools currently in this directory are:

convert Rel ease. pl
This Perl script does consistency checks for the external <top> definitions in the RELEASE file. This script also
creates envPaths, cdCommands, and dllPath.bat files for vxWorks and other 10Cs.
cvscl ean. pl
This perl script finds and deletes cvs .#* filesin al directories of the directory tree.
dos2uni x. pl
This perl script convertstext filein DOS CR/LF format to unix 1SO format.
expandVars. pl
This perl tool expands @VAR®@ variables while copying afile.
filterWarnings. pl
Thisisaperl script that filters compiler warning output (for HP-UX).
ful | pat hnane. pl
This perl script returns the fullpathname of afile.
i nstall Epi cs. pl
ThisisaPerl script that installs build created filesinto the install directories.
nmakeDbDepends. pl
This perl script searches .substitutions and .template files for entriesto create a DEPENDSfile.
makel ncl udeDbd. pl
This perl script creates an include dbd file from file names
nmakeMakefi |l e. pl
Thisisaperl script that creates a Makefile in the created O.<arch> directories.
nmakeTestfil e. pl
This perl script generates afile $target.t which executes areal test program in the same directory.
mknf . pl
This perl script generates include file dependencies for targets from source file include statements.
nmunch. pl
Thisisaperl script that creates a ctdt.c file for vxWorks target arch builds which lists the c++ static constructors
and destructors. See munching in the vxWorks documentation for more information.
repl aceVAR. pl
Thisisaperl script that changes VAR(xxX) style macros in CapFast generated databases into the $(xxx) notation
used in EPICS databases.
useMani f est Tool . pl
This tools uses MS Visua C++ compiler version number to determine if we want to use the Manifest Tool
(status=1) or not (status=0).

4.9 Build Documentation Files

4.9.1 Base Documentation Directory

The base/documentation directory contains README files to help users setup and build epics/base.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 77

Chapter 4: EPICS Build Facility
Startup Files

4.9.2 Base Documentation File Descriptions

Thefiles currently in the base/documentation directory are:

README. 1st
Instructions for setup and building epics base
README. ht mi
html version of README.1st
READVE. M5_W NDOWS
Microsoft WIN32 specific instructions
READMVE. ni Cpu030
NI cpu030 specific instructions
README. hpux
HPUX 11 (hpux-parisc) specific instructions
README. cri s
Cris architecture specific instructions
READVE. t r u64uni x
True4Unix/Alpha specific instructions
READVE. dar wi n. ht m
Installation notes for Mac OS X (Darwin)
Bui | di ngR3. 13AppsWthR3. 14. ht
Describes how to modify a R3.13 vxWorks application so that it builds with release R3.14.1.
ConvertingR3. 13AppsToR3. 14. ht
Describes how to convert a R3.13 vxWorks application so that it contains a R3.14 configure directory and R3.14
Makefiles and builds with R3.14.1.
ConvertingR3. 14. Oal pha2AppsTobet al. ht m
Describes how to modify a R3.14.0alphal application so that it builds with release R3.14.0betal.
ConvertingR3. 14. Obet alAppsTobet a2. ht n
Describes how to modify a R3.14.0betal application so that it builds with release R3.14.0beta2.
ConvertingR3. 14. Obet a2AppsToR3. 14. 1. ht nl
Describes how to modify a R3.14.0beta2 application so that it builds with release R3.14.1.
ConvertingR3. 14. * AppsToR3. 14. *. ht
Describes how to modify a R3.14.* application so that it builds with next rel ease after R3.14.*.
Bui | di ngR3. 13Ext ensi onsWt hR3. 14. ht m
Describes how to modify a R3.13 extension so that it builds with release R3.14.1.
RELEASE_NOTES. ht ni
Describes changes in the R3.14.1 release
KnownPr obl ens. ht n
List of known problemsin EPICS base R3.14.1.
Rel easeCheckl i st. htm
Checklist of things that must be done when creating a new release of EPICS Base.

4.10 Startup Files

4.10.1 Base Startup Directory

The base/startup directory contains scripts to help users set the required environment variables and path. The appropriate
startup files should be executed before any EPICS builds.

78 EPICS Application Developer’'s Guide 1/5/09

Chapter 4: EPICS Build Facility
Startup Files

4.10.2 Base Startup File Descriptions

The scripts currently in the base/startup directory are:

Epi csHost Arch
¢ shell script to set EPICS HOST_ARCH environment variable
Epi csHost Ar ch. pl
perl script to set EPICS HOST_ARCH environment variable
Site.profile
Unix bourne shell script to set path and environment variables
Site.cshrc
Unix c shell script to set path and environment variables
cygw n. bat
WIN32 bat file to set path and environment variables for building with cygwin gcc/g++ compilers
wi n32. bat
WIN32 bat file to set path and environment variables for building with MS Visual C++ compilers

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 79

Chapter 4: EPICS Build Facility
Startup Files

80 EPICS Application Developer’'s Guide 1/5/09

Chapter 5. Database Locking, Scanning, And
Processing

5.1 Overview

Before describing particular components of the |OC software, it is helpful to give an overview of three closely related
topics. Database locking, scanning, and processing. Locking is done to prevent two different tasks from simultaneously
modifying related database records. Database scanning is the mechanism for deciding when records should be processed.
The basics of record processing involves obtaining the current value of input fields and outputting the current value of

output fields. As records become more complex so does the record processing.

One powerful feature of the DATABASE is that records can contain links to other records. This feature also causes

considerable complication. Thus, before discussing locking, scanning, and processing, record links are described.

5.2 Record Links

A database record may contain links to other records. Each link is one of the following types:

e INLINK
OUTLINK
INLINKs and OUTLINKSs can be one of the following:
« constant link
Not discussed in this chapter
» database link
A link to another record in the same |OC.
 channdl access link

A link to arecord in another 1OC. It is accessed via a specia |OC client task. It is also possible to force a

link to be a channel access link even it references arecord in the same 1OC.

* hardware link
Not discussed in this chapter

* FWDLINK

A forward link refers to a record that should be processed whenever the record containing the forward link is

processed. The following types are supported:
« constant link
Ignored.
« database link
A link to another record in the same 10C.

» channel access link

A link to arecord in another IOC or alink forced to be a channel access link. Unless the link references the
PROC field it isignored. If it does reference the PROC field a channel access put with avalue of 1 isissued.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide

81

Chapter 5: Database Locking, Scanning, And Processing
Database Links

Linksare defined infilel i nk. h.
NOTE: This chapter discusses mainly database links.

5.3 Database Links

Database links are referenced by calling one of the following routines:

» dbGetLink: The value of thefield referenced by the input link retrieved.
» dbPutLink: The value of the field referenced by the output link is changed.
» dbScanPassive: Therecord referred to by the forward link is processed if it is passive.

A forward link only makes sense when it refers to a passive record that the should be processed when the record
containing the link is processed. For input and output links, however, two other attributes can be specified by the
application devel oper, process passive and maximize severity.

5.3.1 Process Passive

Process passive (PP or NPP), is either TRUE or FALSE. It determines if the linked record should be processed before
getting avalue from an input link or after writing a value to an output link. The linked record will be processed, viaacall
to dbPr ocess, only if the record is a passive record and process passive is TRUE.

NOTE: Three other options may also be specified: CA, CP, and CPP. These options force the link to be handled like a
Channel Access Link. Seelast section of this chapter for details.

5.3.2 Maximize Severity

Maximize severity (M5 or NVB), is TRUE or FALSE. It determinesif alarm severity is propagated across links. For input
links the alarm severity of the record referred to by the link is propagated to the record containing the link. For output
links the alarm severity of the record containing the link is propagated to the record referred to by the link. In either case,
if the severity is changed, the alarm statusis set to LI NK_ALARM

The method of determining if the alarm status and severity should be changed is called " maximize severity”. In addition
to its actual status and severity, each record also has a new status and severity. The new status and severity areinitially O,
which means NO_ALARM Every time a software component wants to modify the status and severity, it first checks the
new severity and only makes a change if the severity it wantsto set is greater than the current new severity. If it does make
a change, it changes the new status and new severity, not the current status and severity. When database monitors are
checked, which is normally done by a record processing routine, the current status and severity are set equal to the new
values and the new values reset to zero. The end result is that the current alarm status and severity reflect the highest
severity outstanding alarm. If multiple alarms of the same severity are present the status reflects the first one detected.

5.4 Database L ocking

The purpose of database locking is to prevent a record from being processed simultaneously by two different tasks. In
addition, it prevents "outside” tasks from changing any field while the record is being processed.

The following routines are provided for database locking.

dbScanLock(precord);

82 EPICS Application Developer’'s Guide 1/5/09

Chapter 5: Database Locking, Scanning, And Processing
Database Scanning

dbScanUnl ock(precord);

The basic idea is to call dbScanLock before accessing database records and calling dbScanUnl ock afterwords.
Because of database links (Input, Output, and Forward) a modification to one record can cause modification to other
records. Records linked together with database links are placed in the same lock set. dbScanLock locks the entire lock
set not just the record requested. dbScanUnl ock unlocks the entire set.

The following rules determine when the lock routines must be called:

1. The periodic, I/O event, and event tasks lock before and unlock after processing:

2. dbPut Fi el d locks before modifying arecord and unlocks afterwards.

3. dbCet Fi el d locks before reading and unlocks afterwards.

4. Any asynchronous record support completion routine must lock before modifying a record and unlock afterwards.

All records connected by any kind of database link are placed in the same lock set. Versions of EPICS Base prior to R3.14
allowed an NPP NMS input link to exist between different lock sets, but this behaviour is not safe where the read and
write operations on the field value are not atomic in nature.

5.5 Database Scanning

Database scanning refers to requests that database records be processed. Four types of scanning are possible:

1. Periodic - Records are scanned at regular intervals.
2. 1/O event - A record is scanned as the result of an 1/0 interrupt.
3. Event - A record is scanned as the result of any task issuing apost _event request.

4. Passive - A record is scanned as a result of a call to dbScanPassi ve. dbScanPassi ve will issue a record
processing request if and only if the record is passive and is not already being processed.

A dbScanPassi ve request results from atask calling one of the following routines:

» dbScanPassive: Only record processing routines, dbGet Li nk, dbPut Li nk, and dbPutField cal
dbScanPassi ve. Record processing routines call it for each forward link in the record.

» dbPutField: Thisroutine changesthe specified field and then, if the field has been declared pr ocess_passi ve,
calls dbScanPassi ve. Each field of each record type has the attribute pr ocess_passi ve declared TRUE or
FALSE in the definition file. This attribute is a global property, i.e. the application developer has no control of it.
This use of process_passi ve isused only by dbPut Fi el d. If dbPut Fi el d finds the record aready active
(this can happen to asynchronous records) and it is supposed to cause it to process, it arranges for it to be processed
again, when the current processing compl etes.

» dbGetLink: If the link specifies process passive, this routine calls dbScanPassi ve. Whether or not
dbScanPassi ve iscalled, it then obtains the specified value.

o dbPutLink: This routine changes the specified field. Then, if the link specifies process passive, it calls
dbScanPassi ve. dbPut Li nk is only caled from record processing routines. Note that this usage of
process_passi ve is under the control of the application developer. If dbPut Li nk finds the record aready
active because of a dbPut Fi el d directed to this record then it arranges for the record to be processed again,
when the current processing compl etes.

All non-record processing tasks (Channel Access, Sequence Programs, etc.) call dbGet Fi el d to obtain database values.
dbCet Fi el d just reads values without asking that a record be processed.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 83

Chapter 5: Database Locking, Scanning, And Processing
Record Processing

5.6 Record Processing

A record is processed as aresult of acall to dbPr ocess. Each record support module must supply aroutine pr ocess.
This routine does most of the work related to record processing. Since the details of record processing are record type
specific thistopic is discussed in greater detail in Chapter "Record Support" for details.

5.7 Guidelines for Creating Database Links

The ability to link records together is an extremely powerful feature of the IOC software. In order to use links properly it
isimportant that the Application Developer understand how they are processed. As an introduction consider the following
example:

InLink PP

A FwdLink B FwdLink C

Assume that A, B, and C are all passive records. The notation states that A has aforward link to B and B to C. C has an
input link obtaining a value from A. Assume, for some reason, A gets processed. The following sequence of events
OCCUrs:

1. A begins processing. While processing a request is made to process B.

2. B starts processing. While processing a request is made to process C.

3. C dtarts processing. One of the first stepsisto get avalue from A viathe input link.

4

. At this point a question occurs. Note that the input link specifies process passive (signified by the PP after
I nLi nk). But process passive states that A should be processed before the value is retrieved. Are we in an infinite
loop? The answer is no. Every record contains a field pact (processing active), which is set TRUE when record
processing beginsand is not set FALSE until all processing completes. When C is processed A till haspact TRUE
and will not be processed again.

5. C obtains the value from A and completes its processing. Control returnsto B.
6. B completes returning control to A
7. A completes processing.

This brief example demonstrates that database links needs more discussion.

5.7.1 Rules Relating to Database L inks

5.7.1.1 Processing Order
The processing order is guaranteed to follow the following rules:

1. Forward links are processed in order from left to right and top to bottom. For example the following records are
processed in the order FLNK1, FLNK2, FLNK3, FLNK4 .

2. If arecord has multiple input links (calculation and select records) the input is obtained in the natural order. For
example if the fields are named | NPA, | NPB, ..., | NPL, then the links are read in the order A then B then C, etc.
Thusif obtaining an input results in arecord being processed, the processing order is guaranteed.

84 EPICS Application Developer’'s Guide 1/5/09

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links

FLNK1 FLNK2

fanout

FLNK3 FLNK4

3. All input and output links are processed before the forward link.

5.7.1.2 Lock Sets

All records, except for the conditions listed in the next paragraph, linked together directly or indirectly are placed in the
same lock set. When dbScanLock is called the entire set, not just the specified record, is locked. This prevents two
different tasks from simultaneously modifying recordsin the same lock set.

5.7.1.3 PACT - processing active

Each record containsafield pact . Thisfield is set TRUE at the beginning of record processing and is not set FALSE until
the record is completely processed. In particular no links are processed with pact FALSE. This prevents infinite
processing loops. The example given at the beginning of this section gives an example. It will be seen in the next two
sections that pact has other uses.

5.7.1.4 Process Passive: Link option

Input and output links have an option called process passive. For each such link the application developer can specify
process passive TRUE (PP) or process passive FALSE (NPP). Consider the following example

InLink PP }
FwdLink
A fanout
FwdLink C
InLink PP 4

Assume that al records except fanout are passive. When the fanout record is processed the following sequence of events
occur:

=

. Fanout starts processing and asks that B be processed.

. B begins processing. It callsdbCet Li nk to obtain datafrom A.

. Because the input link has process passive true, arequest is made to process A.

. A is processed, the data value fetched, and control is returned to B

. B completes processing and control is returned to fanout. Fanout asks that C be processed.
. C begins processing. It callsdbCet Li nk to obtain datafrom A.

. Because the input link has process passive TRUE, arequest is made to process A.

. A is processed, the data value fetched, and control is returned to C.

. C completes processing and returns to fanout

© 0O N O O &~ WDN

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 85

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Synchronous Records

10. The fanout completes

Note that A got processed twice. Thisisunnecessary. If theinput link to C is declared no process passive then A will only
be processed once. Thus we should have .

InLink PP v
FwdLink
A fanout
FwdLink C
InLink NPP 4

5.7.1.5 Process Passive: Field attribute

Each field of each database record type has an attribute called pr ocess_passi ve. This attribute is specified in the
record definition file. It is not under the control of the application developer. This attribute is used only by dbPut Fi el d.
It determines if a passive record will be processed after dbPut Fi el d changes a field in the record. Consult the record
specific information in the record reference manual for the setting of individual fields.

5.7.1.6 Maximize Severity: Link option

Input and output links have an option called maximize severity. For each such link the application developer can specify
maximize severity TRUE (MS) or maximize severity FALSE (NVS).

When database input or output links are defined, the application developer can specify if alarm severities should be
propagated across links. For input links the severity is propagated from the record referred to by the link to the record
containing the link. For output links the severity of the record containing the link is propagated to the record referenced by
the link. The alarm severity istransferred only if the new severity will be greater than the current severity. If the severity is
propagated the alarm status is set equal to LI NK_ALARM

5.8 Guiddlines for Synchronous Records

A synchronous record is arecord that can be completely processed without waiting. Thus the application developer never
needs to consider the possibility of delays when he defines a set of related records. The only consideration is deciding
when records should be processed and in what order a set of records should be processed.

The following reviews the methods available to the application programmer for deciding when to process arecord and for
enforcing the order of record processing.

1. A record can be scanned periodically (at one of several rates), vial/O event, or via Event.

2. For each periodic group and for each Event group the phase field can be used to specify processing order.

3. The application programmer has no control over the record processing order of records in different groups.

4

. The disable fields (SDI S, DI SA, and DI SV) can be used to disable records from being processed. By letting the
SDI S field of an entire set of records refer to the same input record, the entire set can be enabled or disabled
simultaneously. See the Record Reference Manual for details.

86 EPICS Application Developer’'s Guide 1/5/09

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

5. A record (periodic or other) can be the root of a set of passive records that will all be processed whenever the root
record is processed. The set isformed by input, output, and forward links.

6. Thepr ocess_passi ve option specified for each field of each record determinesif a passive record is processed
when adbPut Fi el d isdirected to the field. The application devel oper must be aware of the possibility of record
processing being triggered by external sources if dbPut Fi el ds are directed to fields that have
process_passi ve TRUE.

7. The pr ocess_passi ve option for input and output links provides the application devel oper control over how a
set of records are scanned.

8. General link structures can be defined. The application programmer should be wary, however, of defining arbitrary
structures without carefully analyzing the processing order.

5.9 Guiddines for Asynchronous Records

The previous discussion does not allow for asynchronous records. An example is a GPIB input record. When therecord is
processed the GPIB request is started and the processing routine returns. Processing, however, is not really complete until
the GPIB request completes. This is handled via an asynchronous completion routine. Lets state a few attributes of
asynchronous record processing.

During the initial processing for all asynchronous records the following is done:

1. pact isset TRUE

2. Dataisobtained for all input links

3. Record processing is started

4. The record processing routine returns

The asynchronous completion routine performs the following algorithm:

5. Record processing continues

6. Record specific alarm conditions are checked
7. Monitors are raised

8. Forward links are processed

9. pact isset FALSE.

A few attributes of the above rules are:

10. Asynchronous record processing does not delay the scanners.

11. Between the time record processing begins and the asynchronous completion routine compl etes, no attempt will be
made to again process the record. Thisis because pact is TRUE. Theroutine dbPr ocess checks pact and does
not call the record processing routine if it is TRUE. Note, however, that if dbPr ocess finds the record active 10
timesin succession, it raises a SCAN_ALARM

12. Forward and output links are triggered only when the asynchronous completion routine completes record
processing.

With these rules the following works just fine:

ASYN dbScanPasive B

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 87

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

When dbPr ocess iscaled for record ASYN, processing will be started but dbScanPassi ve will not be called. Until
the asynchronous completion routine executes any additional attempts to process ASYN are ignored. When the
asynchronous callback is invoked the dbScanPassi ve is performed.

Problems still remain. A few examples are:

5.9.1 Infinite Loop

Infinite processing loops are possible.

dbScanPasive

dbScanPasive

Assume both A and B are asynchronous passive records and a request is made to process A. The following sequence of
events occur.

1. A startsrecord processing and returns leaving pact TRUE.

2. Sometime later the record completion for A occurs. During record completion a request is made to process B. B
starts processing and control returnsto A which completes leaving itspact field FALSE.

3. Sometime later the record completion for B occurs. During record completion a request is made to process A. A
starts processing and control returnsto B which completesleaving its pact field FALSE.

Thus an infinite loop of record processing has been set up. It is up to the application devel oper to prevent such loops.

5.9.2 Obtain Old Data

A dbCet Li nk to a passive asynchronous record can get old data.

A dbGetLink B

If A isa passive asynchronous record then the dbGet Li nk request forces dbPr ocess to be called for A. dbPr ocess
starts the processing and returns. dbGet Li nk then reads the desired value which is still old because processing will only
be completed at alater time.

5.9.3 Delays

Consider the following:

ASYN dbScanPasive ASYN dbScanPasive —

The second ASY N record will not begin processing until the first completes, etc. Thisis not really a problem except that
the application developer must be aware of delays caused by asynchronous records. Again, note that scanners are not
delayed, only records downstream of asynchronous records.

88 EPICS Application Developer’'s Guide 1/5/09

Chapter 5: Database Locking, Scanning, And Processing
Cached Puts

5.9.4 Task Abort

If the processing task aborts and the watch dog task cleans up before the asynchronous processing routine completes what
happens? If the asynchronous routine completes before the watch dog task runs everything is okay. If it doesn't? Thisisa
more general question of the consequences of having the watchdog timer restart a scan task. EPICS currently does not
allow scanners to be automatically restarted.

5.10 Cached Puts

The rules followed by dbPut Li nk and dbPut Fi el d provide for "cached” puts. This is necessary because of
asynchronous records. Two cases arise.

The first results from adbPut Fi el d, which isa put coming from outside the database, i.e. Channel Access puts. If this
is directed to arecord that already has pact TRUE because the record started processing but asynchronous completion
has not yet occurred, then avalue is written to the record but nothing will be done with the value until the record is again
processed. In order to make this happen dbPut Fi el d arranges to have the record reprocessed when the record finally
completes processing.

The second case results from dbPut Li nk finding a record already active because of a dbPut Fi el d directed to the
record. In this case dbPut Li nk arranges to have the record reprocessed when the record finally completes processing. If
therecord is already active because it appears twice in achain of record processing, it is not reprocessed because the chain
of record processing would constitute an infinite loop.

Note that the term caching not queuing is used. If multiple requests are directed to a record while it is active, each new
valueisplaced in the record but it will till only be processed once, i.e. last value wins.

5.11 putNotify

dbPutNotify, which is called when a Channel Accessclient callsca put_callback, isarequest to notify the caller when all
records processed as aresult of the put complete. Because of asynchronous records this can be complicated and the set of
records that are processed because of a put may not be deterministic. The result of a dbPutNotify is the same as a
dbPutField except for the following:

» dbPutNotifys are queued rather than cached. Thus when additional dbPutNotifys are directed to a record that
aready has an active dbPutNotify, they are queued. As each one finishesiit releases the next one in the queue.

« If adbPutNotify linksto arecord that is not active but has a dbPutNotify attached to it, then no attempt is made to
process the record.

5.12 Channel AccessLinks

A channdl accesslink is:

1. A record link that references arecord in adifferent 10C.
2. A link that the application devel oper forcesto be a channel accesslink.

A channel access client task (dbCa) handlesall 1/0O for channel access links. It does the following:

» At 1OC initialization dbCaissues channel access search requests for each channel access link.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 89

Chapter 5: Database Locking, Scanning, And Processing
Channel Access Links

* For each input link it establishes a channel access monitor. It usesca_fi el d_t ype andca_el emrent _count
when it establishes the monitor. It also monitors the alarm status. Whenever the monitor is invoked the new datais
stored in a buffer belonging to dbCa. When iocCore or the record support module asks for data the data is taken
from the buffer and converted to the requested type.

 For each output link, a buffer is alocated the first time iocCore/record support issues a put and a channel access
connection has been made. This buffer is allocated accordingto ca_fiel d_type andca_el ement _count .
Each time iocCore/record support issues a put, the datais converted and placed in the buffer and a request is made
to dbCato issue anew ca_put.

Evenif alink references arecord in the same IOC it can be useful to forceit to act like a channel accesslink. In particular
the records will not be forced to be in the same lock set. As an example consider a scan record that links to a set of
unrelated records, each of which can cause alot of records to be processed. It is often NOT desirable to force al these
records into the same lock set. Forcing the links to be handled as channel access links solves the problem.

CA links which connect between IOCs incur the extra overhead associated with message passing protocols, operating
system calls, and network activity. In contrast, CA links which connect records in the same IOC are executed more
efficiently by directly calling database access functions such as dbPutField() and dbGetField(), or by receiving callbacks
directly from a database monitor subscription event queue.

Because channel access links interact with the database only via dbPutField, dbGetField, and a database monitor
subscription event queue, their interaction with the database is fundamentally different from database links which are
tightly integrated within the code that executes database records. For this reason and because channel access does not
understand process passive or maximize severity, the semantics of channel access links are not the same as database links.
Let’s discuss the channel access semantics of INLINK, OUTLINK, and FWDLINK separately.

5.12.1 INLINK

The options for process passive are:

* PP or NPP - Thislink is made a channel access link because the referenced record is not found in the local 10C. It
is not possible to honor PP, thus the link always acts like NPP.

» CA - Forcethelink to be a channel access link.

» CP - Force the link to be a channel access link and also request that the record containing the link be processed
whenever a monitor occurs.

» CPP - Forcethelink to be a channel accesslink and also request that the record containing the link, if it is passive,
be processed whenever a monitor occurs.

Maximize Severity is honored.

5.12.2 OUTLINK

The options for process passive are:

* PP or NPP - Thislink is made a channel access link because the referenced record is not found in the local 10C. It
is not possible to honor PP thus the link always acts like NPP.

* CA - Forcethelink to be achannel accesslink.

Maximize Severity is not honored.

5.12.3 FWDLINK

A channel access forward link is honored only if it references the PROC field of a record. In that case a ca put with a
value of 1iswritten each time aforward link request is issued.

90 EPICS Application Developer’'s Guide 1/5/09

Chapter 5: Database Locking, Scanning, And Processing
Channel Access Links

The options for process passive are:

* PP or NPP - Thislink is made achannel access link because the referenced record is not found in the local 10C. It
is not possible to honor PP thus it always acts like NPP.

* CA - Forcethelink to be achannel access link.

Maximize Severity is not honored.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 91

Chapter 5: Database Locking, Scanning, And Processing
Channel Access Links

92 EPICS Application Developer’'s Guide 1/5/09

Chapter 6. Database Definition

6.1 Overview

This chapter describes database definitions. The following definitions are described:

* Menu

* Record Type
 Device
 Driver

* Registrar

* Variable

» Function

* Breakpoint Table
* Record Instance

Record Instances are fundamentally different from the other definitions. A file containing record instances should never
contain any of the other definitions and vice-versa. Thus the following convention is foll owed:

» Database Definition File - A file that contains any type of definition except record instances.
* Record Instance File - A file that contains only record instance definitions.

This chapter also describes utility programs which operate on these definitions

Any combination of definitions can appear in asinglefile or in a set of filesrelated to each other viaincludefiles.

6.2 Brief Summary of Database Definition Syntax

path "path"
addpat h "path"
i nclude "fil enane"
#conment
menu(nanme) {
i nclude "fil enane"
choi ce(choi ce_nane, "choi ce_val ue")

}

recordtype(record_type) {
i ncl ude "fil enanme"
field(field_nane,field_type) {
asl (asl _l evel)
initial ("init_val ue")

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 93

Chapter 6: Database Definition
General Rules for Database Definition

pr onpt gr oup(gui _gr oup)
pronpt (" pronpt _val ue")
speci al (speci al _val ue)

pp(pp_val ue)
interest(interest_|evel)

base(base_type)

si ze(si ze_val ue)
extra("extra_info")
menu(hane)

}
device(record_type,link_type, dset_nane, "choi ce_string”)
driver(drvet _name)

regi strar(function_nane)

vari abl e(vari abl e_nane)

br eakt abl e(nane) {
raw val ue eng_val ue

}
#The Fol |l owi ng defines a Record Instance
record(record_type, record_nane) {

i nclude "fil enane"
field(field_nane,"val ue")

}
#NOTE: GDCT uses the keyword grecord instead of record

6.3 General Rulesfor Database Definition

6.3.1 Keywords

The following are keywords, i.e. they may not be used as values unless they are enclosed in quotes:

pat h
addpat h

i ncl ude
menu

choi ce
recordtype
field

devi ce
driver

94 EPICS Application Developer’'s Guide

1/5/09

Chapter 6: Database Definition
General Rules for Database Definition

regi strar
vari abl e
br eakt abl e
record
grecord

6.3.2 Unquoted Strings

In the summary section, some values are shown as quoted strings and some unquoted. The actual rule is that any string
consisting of only the following characters does not have to be quoted unlessit contains one of the above keywords:

a-z AZ0-9 _-: . [] <>;

These are also the legal characters for process variable names. Thus in many cases quotes are not needed.

6.3.3 Quoted Strings

A quoted string can contain any ascii character except the quote character "'. The quote character itself can given by using
\ as an escape. For example "\"" is a quoted string containing the single character ".

6.3.4 Macro Substitution

Macro substitutions are permitted inside quoted strings. Macro instances take the form:
$(nane)

or
${ nane}

There is no distinction between the use of parentheses or braces for delimiters, although the two must match for a given
macro instance. The macro name can be made up from other macros, for example:

$(nane_$(sel))

A macro instance can also provide a default value that is used when no macro with the given name is defined. The default
value can be defined in terms of other macrosif desired, but cannot contain any unescaped comma characters. The syntax
for specifying adefault valueis as follows:

$(nanme=def aul t)

Finally macro instances can also contain definitions of other macros, which can (temporarily) override any existing values
for those macros but are in scope only for the duration of the expansion of this macro instance. These definitions consist
of name=val ue sequences separated by commas, for example:

$(abcd=%$(a) $(b) $(c) $(d), a=A, b=B, c=C, d=D)

6.3.5 Escape Sequences

The database routines trandate standard C escape sequences inside database field value strings only. The standard C
escape seguences supported are:

Va \b \f \n\r ‘'t \v \\ \?2\" \" \ooo \xhh

\ 000 represents an octal number with 1, 2, or 3 digits. \ xhh represents a hexadecima number with 1 or 2 digits.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 95

Chapter 6: Database Definition
General Rules for Database Definition

6.3.6 Define beforereferencing

No item can be referenced until it is defined. For example ar ecor dt ype menu field can not reference a menu unless
that menu definition has already been defined. Another example is that a record instance can not appear until the
associated record type has been defined.

6.3.7 Multiple Definitions

If aparticular menu, recordtype, device, driver, or breskpoint table is defined more than once, then only the first instance
is used. Record instance definitions are cumulative, i.e. each time anew field value is encountered it replaces the previous
value.

6.3.8 filename extension

By convention:

» Record instances files have the extension ".db"
» Database definition files have the extension ".dbd".

6.3.9 path addpath

The path follows the standard Unix convention, i.e. it isalist of directory names separated by colons (Unix) or semicolons
(winXX).

Format:

path "dir:dir...:dir"
addpath "dir:dir...:dir

NOTE: In winXX the separator is; instead of :

The pat h command specifies the current path. The addpat h appends directory names to the current path. The path is
used to locate the initial database file and included files. An empty di r at the beginning, middle, or end of a non-empty
path string means the current directory. For example:

nnn: : nm # Current directory is between nnn and nmm
:nnn # Current directory is first
nnn: # Current directory is |ast

Utilities which load database files (dbExpand, dbLoadDat abase, etc.) allow the user to specify an initial path. The
pat h and addpat h commands can be used to change or extend the initial path.

Theinitia path is determined as follows:

If aninitial pathis specified, it is used. Else:
If the environment variable EPI CS_DB | NCLUDE PATH s defined, it is used. Else:
the default pathis".", i.e. the current directory.

The path is used unless the filename contains a/ or \. Thefirst directory containing the specified file is used.

6.3.10 include

Format:

i nclude "fil enane"

96 EPICS Application Developer’'s Guide 1/5/09

Chapter 6: Database Definition
Menu

An include statement can appear at any place shown in the summary. It uses the path as specified above.

6.3.11 comment

The comment symbol is "#". Whenever the comment symbol appears, it and all characters through the end of the line are
ignored.

6.4 Menu

Format:

menu(nanme) {
choi ce(choi ce_nane, "choi ce_val ue")

}
Where:

name - Name for menu. This is the unique name identifying the menu. If duplicate definitions are specified, only
thefirst is used.

choice_name - The name placed in the enumgenerated by dbToMenuH or dbToRecor dt ypeH

choice value - The value associated with the choice.

Example:

menu(nenuYesNo) {
choi ce(nenuYesNoNO, "NO'")
choi ce(nenuYesNoYES, " YES")

6.5 Record Type

6.5.1 For mat:

recordtype(record_type) {
field(field nane,field type) {

asl (asl _level)
initial ("init_val ue")
pr onpt gr oup(gui _gr oup)
pronpt (" pronpt _val ue")
speci al (speci al _val ue)
pp(pp_val ue)
interest(interest I|evel)
base(base_type)
si ze(size_val ue)
extra("extra_info")
menu(" name")

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 97

Chapter 6: Database Definition
Record Type

6.5.2rules

» agl - Access Security Level. The default is ASL1. Access Security is discussed in alater chapter. Only two values

are permitted for this field (ASLO and ASL1). Fields which operators normally change are assigned ASLO. Other
fields are assigned ASL1. For example, the VAL field of an analog output record is assigned ASLO and all other
fields ASL1. Thisis because only the VAL field should be modified during normal operations.

initial - Initial Value.

promptgroup - Prompt group to which field belongs. This is for use by Database Configuration Tools. This is
defined only for fields that can be given values by database configuration tools. File gui gr oup.h contains all
possible definitions. The different groups allow database configuration tools to present the user with groups of
fields rather than all prompt fields. | don’t know of any tool that currently uses groups.

prompt - A prompt string for database configuration tools. Optional if pr onpt gr oup is not defined.
special - If specified, then special processing isrequired for thisfield at run time.

pp - Should a passive record be processed when Channel Access writesto thisfield? The default is NO.
interest - Only used by the dbpr shell command.

base - For integer fields, abase of DECI MAL or HEX can be specified. The default is DECI MVAL.

size - Must be specified for DBF_STRI NGfields.

extra - Must be specified for DBF_NQACCESS fields.

menu - Must be specified for DBF_MENUfields. It is the name of the associated menu.

6.5.3 definitions

* record_type - The unique name of the record type. If duplicates are specified, only the first definition is used.
« field_name- Thefield name. Only aphanumeric characters are allowed. When include files are generated, thefield

name is converted to lower case. Previous versions of EPICS required that field name be a maximum of four
characters. Although this restriction no longer exists, problems may arrise with some Channel Access clients if
longer field names are chosen.

« field_type- This must be one of the following values:

« DBF_STRI NG
. DBF_CHAR

« DBF_UCHAR

« DBF_SHORT

« DBF_USHORT
. DBF_LONG

« DBF_ULONG

- DBF_FLOAT

« DBF_DOUBLE
« DBF_ENUM

- DBF_MENU

- DBF_DEVI CE
« DBF_I NLI NK
« DBF_OUTLI NK
« DBF_PWDLI NK
- DBF_NQACCESS

98

EPICS Application Developer’'s Guide 1/5/09

Chapter 6: Database Definition
Record Type

e ASL1 (default value)

ASLO

ad_level - This must be one of the following values:

* init_value- A legal value for data type.
» prompt_value- A prompt value for database configuration tools.
* gui_group - This must be one of the following:

QU _COVWMON
QU _ALARVG
QU _BITS1
QU _BITS2
QU _CALC
QU _CLOCK

QU _COVPRESS
GU _CONVERT
GU _DI SPLAY

QU _H ST
QU _I NPUTS
QU _LINKS
QU _MBB

QU _MOTOR
QU _OUTPUT
QU _PID
QU _PULSE
QU _SELECT
QU _SEQL
QU _SEQ
QU _SEG
QU _SuB

QU _TI MER
QU _VAVE
QU _SCAN

NOTE: GJ types were invented with the intention of allowing database configuration tools to prompt for
groups of fields and when a user selects a group the fields within the group. Since this feature has seldom
been used, many record types have not assigned the correct GUI groups to some fields.

* special_value must be one of the following:
An integer value greater than 103. In this case, the record support special routine is called whenever the field
is modified by database access. This feature is present only for compatibility. New support modules should

use SPC_MOD.

The following value disallows access to field.
SPC_NOMOD - This means that field can not be modified at runtime except by the record/device support

modules for the record type.

The following values are used for database common. They must NOT be used for record specific fields.
SPC_SCAN - Scan related field.
SPC_ALARVACK - Alarm acknowledgment field.
SPC_AS - Access security field.

EPICS Release 3.14.10

EPICS Application Developer’'s Guide

99

Chapter 6: Database Definition

Record Type

The following value is used if record support wants to trap dbNaneToAddr calls.

SPC DBADDR - This is set if the record support cvt _dbaddr routine should be called whenever
dbNaneToAddr iscalled, i.e. when code outside record/device support want to access the field.

The following values all result in the record support specia routine being called whenever database access
modifies the field. The only reason for multiple values is that originally it seemed like a good idea. New
support modules should only use SPC_MOD.

SPC_MOD - Notify when modified, i.e. call the record support specia routine whenever the field is modified
by database access.

SPC_RESET - areset field is being modified.
SPC_LI NCONV - A linear conversion field is being modified.
SPC CALC- A calcfield is being modified.

» pp_value - Should a passive record be processed when Channel Access writes to this field? The allowed values

are

NO (defaullt)
YES

* interest_level - Aninterest level for the dbpr command.

e base-

For integer type fields, the default base. The legal values are:
DECI MAL (Defaullt)
HEX

* size value - The number of characters for a DBF_STRI NGfield.

 extra_info - For DBF_NOACCESS fields, this is the C language definition for the field. The definition must end
with the fieldname in lower case.

6.5.4 Example

The following is the definition of the binary input record.

recordtype(bi) {
i ncl ude "dbCommon. dbd"
field(1NP, DBF_I NLI NK) {
pronpt ("1 nput Specification")
pronpt gr oup(GUI _I NPUTS)

i nt

}

erest (1)

field(VAL, DBF_ENUM {
pronpt ("Current Val ue")
pronpt gr oup(GJI _I NPUTS)

asl

(ASLO)

pp(TRUE)

}

field(zSV, DBF_MENU) ({
pronpt ("Zero Error Severity")
pronpt gr oup(GUl _ALARNMES)

pp(TRUE)
interest(1)
nmenu(menuAl ar nSevr)
}
field(OsV, DBF_MENU) {

100

EPICS Application Developer’'s Guide 1/5/09

Chapter 6: Database Definition
Record Type

prompt ("One Error Severity")
pr onpt gr oup(GUI _BI TS1)

pp(TRUE)

interest(1)

menu(menuAl ar nSevr)

—h

i el d(COsV, DBF_MENU) {
prompt (" Change of State Svr")
pr onpt gr oup(GUI _BI TS2)

pp(TRUE)

interest(1)

menu(menuAl ar nSevr)

—h

i el d(ZNAM DBF_STRI NG {
prompt ("Zero Nane")
pr onmpt gr oup(GUI _CALQC)
pp(TRUE)

interest(1)

si ze(20)

—h

i el d(ONAM DBF_STRI NG {
pronpt (" One Nane")

pr onpt gr oup(GUI _CLQOCK)
pp(TRUE)

interest(1)

si ze(20)

fiel d(RVAL, DBF_ULONG ({
prompt (" Raw Val ue")
pp(TRUE)

fiel d(ORAW DBF_ULONG ({
pronmpt ("prev Raw Val ue")
speci al (SPC_NOMVOD)
i nterest(3)

fiel d(MASK, DBF_ULONG ({
pronpt (" Har dwar e Mask")
speci al (SPC_NOMVOD)
interest(1)

fiel d(LALM DBF_USHORT) {
prompt ("Last Val ue Al arned")
speci al (SPC_NOMOD)
i nterest(3)

fiel d(M.ST, DBF_USHORT) {
prompt ("Last Val ue Monitored")
speci al (SPC_NOVOD)
i nterest(3)

field(SlOL, DBF_I NLI NK) {
prompt ("Si m I nput Specifctn")

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 101

Chapter 6: Database Definition
Device

pronpt gr oup(GUI _I NPUTS)
interest(1)

}
fiel d(SVAL, DBF_USHORT) {

pronmpt ("Si nul ati on Val ue")

}
field(SI M, DBF_I NLI NK) {

prompt ("Si m Mode Location")
pronpt gr oup(GUI _I NPUTS)
interest(1)

}

field(SI MM DBF_MENU) {
prompt (" Si nul ati on Mode")
interest(1)
menu(menuYesNo)

}
field(SlI M DBF_MENU) {
prompt ("Si m node Al arm Svrty")
pronpt gr oup(GUI _I NPUTS)
i nterest(2)
menu(menuAl ar nSevr)

6.6 Device

6.6.1 For mat:

devi ce(record _type, link _type,dset nane, "choice_string”)

6.6.2 definitions

 record_type - Record type. The combination of record_t ype and choi ce_st ri ng must be unique. If the
same combination appears multiple times, the first definition is used.

¢ link_type- Link type. This must be one of the following:
» CONSTANT
* PV_LINK
* VWME_IO
« CAMAC | O
*«AB 10O
*« GPIB_IO
* BITBUS_I O
« INST_IO
« BBGPIB_IO
*RF_IO
* WX _I10

102 EPICS Application Developer’'s Guide 1/5/09

Chapter 6: Database Definition
Driver

» dset_name - The exact name of the device support entry table without the trailing "DSET". Duplicates are not
allowed.

» choice_string Choice string for database configuration tools. Note that it must be enclosed in "". Note that for a
given record type, each choi ce_st ri ng must be unique.

6.6.3 Examples

devi ce(ai , CONSTANT, devAi Soft, "Soft Channel ")
devi ce(ai, VME_I O devAi Xy566Se, " XYCOM 566 SE Scanned")

6.7 Driver

6.7.1 For mat:

driver (drvet nane)

6.7.2 Definitions

» drvet_name - If duplicates are defined, only the first is used.

6.7.3 Examples

driver (drvVxi)
driver (drvXy210)

6.8 Registrar Declaration

6.8.1 Format:

regi strar(function_nane)

6.8.2 Definitions

« function_name - The name of an C function that accepts no arguments, returns void and has been exported from
its source file with an epicsExportRegistrar declaration, e.g.

static void myRegistrar(void);
epi csExport Regi strar(nmyRegi strar);

This can be used to register functions for use by subroutine records or that can be invoked from iocsh. The example
application described in Chapter 2.2, “Example I0C Application” on page 11" provides an example of how to register
functions for subroutine records.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 103

Chapter 6: Database Definition
Variable Declaration

6.8.3 Example

regi strar (asSub)

6.9 Variable Declaration

6.9.1 For mat:

vari abl e(vari abl e_nane[, type])

6.9.2 Definitions

e variable name - The name of a C variable which has been exported from its source file with an
epicsExportAddress declaration.

* type- The C variable type. If not present, int isassumed. Currently only int and double variables are supported.

This registers a diagnostic/configuration variable for device and driver support or a subroutine record subroutine so that
the variable can be read and set with the iocsh var command (Section on page 251). The example application described in
Section 2.2 on page 11 provides an example of how to register a debug variable for a subroutine record.

6.9.3 Example
In an application C source file;

#i ncl ude <epi csExport. h>

static doubl e nyParaneter;
epi csExport Addr ess(doubl e, nyParaneter);

In an application database definition file:

vari abl e(myPar anet er, doubl e)

6.10 Function Declaration

6.10.1 For mat:

function(function_nane)

6.10.2 Definitions

 function_name - The name of a C function which has been exported from its source file with an
epicsRegisterFunction declaration.

104 EPICS Application Developer’'s Guide 1/5/09

Chapter 6: Database Definition
Breakpoint Table

Thisregisters afunction so that it can be found in the function registry for use by record types such as sub or aSub which
refer to the function by name. The example application described in Chapter 2.2, “Example 10C Application” on page 11
provides an example of how to register functions for a subroutine record.

6.10.3 Example

In an application C source file;
#i ncl ude <epi csExport. h>
#i ncl ude <regi stryFunction. h>

static | ong myFunction(void *argp) {
/* ny code ... */
}

epi csRegi st er Functi on(nyFunction);

In an application database definition file:

function(nmyFuncti on)

6.11 Breakpoint Table

6.11.1 For mat:

br eakt abl e(nane) {
raw _val ue eng_val ue

6.11.2 Definitions

» name - Name, which must be a pha-numeric, of the breakpoint table. If duplicates are specified the first is used.
» raw_value- Theraw value, i.e. the actual ADC value associated with the beginning of the interval.
» eng_value - The engineering value associated with the beginning of the interval.

6.11.3 Example

br eakt abl e(typeJdegC) {

0. 000000 0. 000000

365. 023224 67. 000000
1000. 046448 178. 000000
3007. 255859 524. 000000
3543. 383789 613. 000000
4042.988281 692. 000000
4101. 488281 701. 000000

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 105

Chapter 6: Database Definition
Record Instance

6.12 Record I nstance

6.12.1 For mat:

record(record _type, record_nane) {
field(field nane, "field value")
i nfo(info_name, "info_val ue")

6.12.2 definitions

* record_type- Therecord type.
 record_name - The record name. This must be composed of the following characters.
a-z AAZ20-9 - +: [] <>;
NOTE: If macro substitutions are used the name must be quoted.
If duplicate definitions are given for the same record, then the last value given for each field is the value assigned to
thefield.
« field_name- A field name
« field_value - Depends on field type. Inside the double quotes the field value string may contain escaped C89
characters such as\", \t, \n, \064 and \x7e, and these will be translated appropriately when loading the database.

DBF_STRI NG
Any ASCII string. If it exceeds the field length, it will be truncated.
DBF_CHAR, DBF_UCHAR, DBF_SHORT, DBF_USHORT, DBF_LONG, DBF_ULONG
A string that represents a valid integer. The standard C conventions are applied, i.e. aleading O means the
valueisgiven in octal and aleading Ox meansthat valueis given in hex.
DBF_FLOAT, DBF _DOUBLE
The string must represent avalid floating point number.
DBF_MENU
The string must be one of the valid choices for the associated menu.
DBF_DEVI CE
The string must be one of the valid device choice strings.
DBF | NLI NK, DBF_QUTLI NK
NOTES:
* In the field is INP or OUT then it is associated with field DTYP. Other DBF INLINK and
DBF_OUTLINK fields can be either CONSTANT or PV_LINKs
» DTYP must be set beforeits associated INP or OUT field.
» Choosing the DTY Pimplicitly chooses abustype.
» A DTYP of CONSTANT can be either aconstant or aPV_LINK.

The allowed value depends on the bus type as follows:
o CONSTANT
A constant valid for the field associated
« PV_LINK
A value of the form:

record.field process maximize

field, process,andmaxinize areoptional.

106

EPICS Application Developer’'s Guide 1/5/09

Chapter 6: Database Definition
Record Instance

The default valuefor f i el d isVAL.
pr ocess can have one of the following values:
¢ NPP - No Process Passive (Default)
* PP - Process Passive
» CA - Forcelink to be a channel access link
* CP - CA and process on monitor
* CPP - CA and process on monitor if record is passive
NOTES:
CP and CPP arevalid only for INLINKSs.
FWD_LINKscan be PP or CA. If aFWD_LINK isachannel accesslink it must reference the
PROC field.
maxi m ze can have one of the following values
* NVB - No Maximize Severity (Default)
* M5 - Maximize severity
*« WE IO
#Ccard Ssignal @parm
where:
car d - the card number of associated hardware module.
si gnal -signal on card
par m- An arbitrary character string of up to 31 characters.
Thisfield is optional and is device specific.
« CAVAC I O
#Bbranch Ccrate Nstation Asubaddress Ffunction @parm
branch, crate, station, subaddress, and f uncti on should be obvious to canac users.
Subaddr ess and f uncti on are optional (O if not given). Par mis also optiona and is device
dependent (25 characters max).
*« ABIO
#Llink Aadapter Ccard Ssignal @parm
| i nk - Scanner., i.e. vme scanner number
adapt er - Adapter. Allen Bradley also callsthisrack
car d - Card within Allen Bradley Chassis
si gnal -signa on card
par m- An optional character string that is device dependent(27 char max)
« GPIB IO
#L1link Aaddr @parm
I'i nk - gpiblink, i.e. interface
addr - GPIB address
par m- device dependent character string (31 char max)
« BITBUS_ IO
#Llink Nnode Pport Ssignal @parm
I'i nk -link, i.e. vme bitbus interface.
node - bitbus node
port - port onthe node
si gnal - signal on port
par m- device specific character string(31 char max)
* INST_IO
@parm
par m- Device dependent character string
* BBGPIB IO
#Llink Bbbaddr Ggpibaddr @parm
I'i nk - link, i.e. vme bitbus interface.
bbadddr - bitbus address

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 107

Chapter 6: Database Definition
Record Instance

gpi baddr - gpib address
par m- optional device dependent character string(31 char max)
*RF_IO
#Rcryo Mnricro Ddat aset Eel enent
* WXI_IO
#Vframe Cdlot Ssignal @parm (Dynamic addressing)
or
#Vla Signal @arm (Static Addressing)
f r ame - VXI frame number
sl ot - Slot within VXI frame
| a - Logical Address
si gnal - Signal Number
par m- device specific character string(25 char max)
« DBF_PFWDLI NK
Thisis either not defined or elseisaPV_LI NK. See above for definitions.
» info_name - The name of an information item related to this record. See section 6.13 below for more on
information items.

* info_value - Any ASCII string. 10C applications using this information item may place additional restrictions on
the contents of the string.

6.12.3 Examples

record(ai, STS_AbA MaS0) ({
fiel d(SCAN,".1 second")
field(DTYP, "AB-1771l FE- 4t 020NA")
field(INP, "#LO A2 C0 SO FO @)
fiel d(PREC, "4")
fiel d(LINR "LI NEAR")
fiel d(EGUF, "20")
fiel d(EGUL, "4")
field(EGU, "M I11Ii Amps")
fiel d(HOPR, "20")
fiel d(LOPR, "4")

}

record(ao, STS AbAoMaClS0) ({
field(DTYP,"AB-17710FE")
field(QUT,"#LO A2 C1 SO FO @)
fiel d(LINR "LI NEAR")
fiel d(EGUF, "20")
fiel d(EGUL, "4")
field(EGQU, "M IIi Anp")
fiel d(DRVH, "20")
fiel d(DRVL, "4")
fiel d(HOPR, "20")
fiel d(LOPR, "4")
i nf o(aut osaveFi el ds, "VAL")

}

record(bi, STS AbDi A0OCOS0) {
field(SCAN,"1/O Intr")
field(DTYP,"AB-Bi nary |nput")
field(INP,"#LO AO C0O SO FO @)
field(ZNAM "OF ")

108 EPICS Application Developer’'s Guide 1/5/09

Chapter 6: Database Definition
Record Information Item

fiel d(ONAM " On")

6.13 Record I nformation Item

Information items provide a way to attach named string values to individual record instances that are loaded at the same
time as the record definition. They can be attached to any record without having to modify the record type, and can be
retrieved by programs running on the |OC (they are not visible via Channel Access at al). Each item attached to asingle
record must have a unique name by which it is addressed, and database access provides routines to allow arecord’s info
items to be scanned, searched for, retrieved and set. At runtime avoi d* pointer can also be associated with each item,
although only the string value can be initialized from the record definition when the database is |oaded.

6.14 Record Attribute

Each record type can have a set of record attributes. Each attribute is a “psuedo” field that can be accessed via database
and channel access. An attribute is given a name the acts like a field name which has the same value for every instance of
the record type. Two attributes are generated automatically for each record type: RTYP and VERS. Thevauefor RTYPis
the record type name. The default value for VERS is "none specified”, which can be changed by record support. Record
support can call the following routine to create new attributes or change existing attributes:

| ong dbPut Attribute(char *recordTypenane,
char *nane, char*val ue)

The arguments are;

r ecor dTypenane - The name of recordtype.
nane - The attribute name, i.e. the psuedo field name.
val ue - The value assigned to the attribute.

6.15 Breakpoint Tables - Discussion

The menu menuConvert isused for field LI NRof theai and ao records. These records allow raw datato be converted
to/from engineering units via one of the following:

1. No Conversion.

2. Slope Conversion.

3. Linear Conversion.

4. Breakpoint table.
Other record types can a so use this feature. The first choice specifies no conversion; the second and third are both linear
conversions, the difference being that for Slope conversion the user specifies the conversion slope and offset directly,
whereas for Linear conversions these are cal culated by the device support from the requsted Engineering Units range and
the device support’s knowledge of the hardware conversion range. The remaining choices are assumed to be the names of

breakpoint tables. If a breakpoint table is chosen, the record support modules calls cvt RawToEngBpt or
cvt EngToRawBpt . You can look at theai and ao record support modules for details.

If auser wants to add additional breakpoint tables, then the following should be done:

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 109

Chapter 6: Database Definition
Breakpoint Tables - Discussion

» Copy themenuConvert .dbd file from EPICS base/sr ¢/ bpt
» Add definitions for new breakpoint tables to the end
» Make sure modified menuConvert .dbd isloaded into the IOC instead of EPICS version.

It is only necessary to load a breakpoint file if arecord instance actually chooses it. It should also be mentioned that the
Allen Bradley I XE device support misuses the LI NR field. If you use this module, it is very important that you do not
change any of the EPICS supplied definitionsin nenuConver t .dbd. Just add your definitions at the end.

If a breakpoint table is chosen, then the corresponding breakpoint file must be loaded into the IOC beforei ocl ni t is
called.

Normally, it is desirable to directly create the breakpoint tables. However, sometimesiit is desirable to create a breakpoint
table from a table of raw values representing equally spaced engineering units. A good example is the Thermocouple
tables in the OMEGA Engineering, INC Temperature Measurement Handbook. A tool makeBpt is provided to convert
such data to a breakpoint table.

The format for generating a breakpoint table from a data table of raw values corresponding to equally spaced engineering
valuesis:

I conment |ine
<header |ine>
<data tabl e>

The header line contains the following information:

» Name: An aphanumeric ascii string specifying the breakpoint table name
» Low Value Eng: Engineering Units Value for first breakpoint table entry

* Low Value Raw: Raw value for first breakpoint table entry

» High Value Eng: Engineering Units: Highest Value desired

» High Value Raw: Raw Value for High Value Eng

» Error: Allowed error (Engineering Units)

 First Table: Engineering units corresponding to first data table entry

» Last Table: Engineering units corresponding to last data table entry

» Delta Table: Change in engineering units per data table entry

An example definition is:

"TypeKdegF” 32 0 1832 4095 1.0 -454 2500 1
<data tabl e>

The breakpoint table can be generated by executing
makeBpt bpt XXX. dat a

Theinput file must have the extension of data. The output filename is the same as the input filename with the extension of
dbd.

Another way to create the breakpoint tableis to include the following definition in a Makefile.Vx:
BPTS += bpt XXX. dbd

NOTE: This requires the naming convention that all data tables are of the form bpt<name>.data and a breakpoint table
bpt<name>.dbd.

110 EPICS Application Developer’'s Guide 1/5/09

Chapter 6: Database Definition
Menu and Record Type Include File Generation.

6.16 Menu and Record Type Include File Generation.

6.16.1 Introduction

Given a file containing menus, dbToMenuH generates an include file that can be used by any code which uses the
associated menus. Given a file containing any combination of menu definitions and record type definitions,
dbToRecor dt ypeH generates an include file that can be used by any code which uses the menus and record type.

EPICS base uses the following conventions for managing menu and recordtype definitions. Users generating local record
types are encouraged to do likewise.

» Each menu that is either for fields in database common (for example menuScan) or is of globa use (for example
menuYesNo) is defined in a separate file. The name of the file is the same as the menu name with an extension of
dbd. The name of the generated include file is the menu name with an extension of h. Thus menuScan is defined
in afile mrenuScan.dbd and the generated include file is named nenuScan.h

* Each record type definition is defined in a separate file. In addition, this file contains any menu definitions that are
used only by that record type. The name of the file is the same as the recordtype name followed by Recor d.dbd.
The name of the generated include file is the same name with an extension of h. Thus aoRecor d is defined in a
file aoRecor d.dbd and the generated include file is named aoRecor d.h. Since aoRecor d has a private menu
called aoA F, the dbd file and the generated include file have definitions for this menu. Thus for each record type,
there are two source files (xxxRecor d.dbd and xxxRecor d.c) and one generated file (xxxRecor d.h).

Before continuing, it should be mentioned that Application Developers don’'t have to execute dbToMenuH or
dbToRecor dt ypeH. If a developer uses the proper naming conventions, it is only necessary to add definitions to their
Makef i | e. Consult the chapter on the EPICS Build Facility for details..

6.16.2 dbToM enuH

Thistool is executed as follows:
dbToMenuH -1dir -Smacsub nenuXXX. dbd

It generates a file which has the same name as the input file but with an extension of h. Multiple - 1 options can be
specified for an include path and multiple - S options for macro substitution.

For example nmenuPr i ori t y.dbd, which contains the definitions for processing priority contains:

menu(menuPriority) {
choi ce(nmenuPriorityLOW"LOW)
choi ce(nmenuPri orityMeEDI UM " MEDI UM'")
choi ce(nmenuPriorityH GH, "H GH")

}
Theincludefile, menuPri ori t y.h, generated by dbToMenuH contains:

#i f ndef | NCrenuPriorityH
#define I NCrenuPriorityH
typedef enum {
menuPriorityLOW
menuPri orityMeEDI UM
menuPri orityH CGH,
}menuPriority;
#endi f /*I NCrenuPriorityH*/

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 111

Chapter 6: Database Definition
Menu and Record Type Include File Generation.

Any code that needs to use the priority menu values should use these definitions.

6.16.3 dbToRecor dtypeH

Thistool is executed as follows:
dbTorecordtypeH -1dir -Smacsub xxxRecord. dbd

It generates a file which has the same name as the input file but with an extension of h. Multiple - 1 options can be
specified for an include path and multiple - S options for macro substitution.

For example aoRecor d.dbd, which contains the definitions for the analog output record contains:

menu(aoO F) {
choice(aoO F_Full,"Full")
choi ce(aod F_I ncrenental ,"I ncrenental ")
}
recordtype(ao) {
i ncl ude "dbCommon. dbd"
fiel d(VAL, DBF_DOUBLE) ({
pronpt ("Desired Qutput")
asl (ASLO)
pp(TRUE)
}
fiel d(OVAL, DBF_DOUBLE) {
pronpt (" Qut put Val ue")
}

(Many nore field definitions

}
Theincludefile, aoRecor d.h, generated by dbToRecor dt ypeH contains:

#i ncl ude "ellLib. h"

#i ncl ude "epi csMut ex. h"
#i ncl ude "link.h"

#i ncl ude "epi csTi ne. h"
#i ncl ude "epi csTypes. h"

#i f ndef | NCaoO FH
#defi ne | NCaoO FH
t ypedef enum {
aod F_Ful |,
aod F_Increnental,
}aod F;
#endi f /*1 NCaoO FH*/
#i f ndef | NCaoH
#defi ne | NCaoH
typedef struct aoRecord {

char nane[29]; /*Record Name*/
Remai ning fields in database conmon

doubl e val ; /*Desired CQutput*/

doubl e oval ; /*CQut put Val ue*/

remai ni ng record specific fields
} aoRecord;

112 EPICS Application Developer’'s Guide 1/5/09

Chapter 6: Database Definition
Menu and Record Type Include File Generation.

#def i ne aoRecor dNAVE 0
defines for remaining fields in database conmon
#def i ne aoRecor dVAL 42
#def i ne aoRecor dOVAL 43
defines for remaining record specific fields
#i f def CGEN_SI ZE_OFFSET
i nt aoRecordSi zeO f set (dbRecor dType *pdbRecor dType)
{
aoRecord *prec = O;
pdbRecor dType- >papFl dDes|[0] - >si ze=si zeof (pr ec- >nan®e) ;
pdbRecor dType- >papFl dDes|[0] - >of f set =
(short)((char *)&prec->name - (char *)prec);
code to compute size&offset for other fields in dbComon
pdbRecor dType- >papFl dDes[42] - >si ze=si zeof (prec->val);
pdbRecor dType- >papFl dDes[42] - >of f set =
(short)((char *)&prec->val - (char *)prec);
pdbRecor dType- >papFl dDes[43] - >si ze=si zeof (prec- >oval) ;
pdbRecor dType- >papFl dDes[43] - >of f set =
(short)((char *)&prec->oval - (char *)prec);
code to conmpute size&offset for remmining fields
pdbRecor dType->rec_si ze = sizeof (*prec);
return(0);

}
#endi f /*GEN_SI ZE_OFFSET*/

The analog output record support module and all associated device support modules should use this include file. No other
code should useit. Let’s discuss the various parts of thefile.:

» The enumgenerated from the menu definition should be used to reference the value of the field associated with the
menul.

» Thet ypedef and st r uct ur e defining the record are used by record support and device support to access fields
in an analog output record.

» A #defi ne ispresent for each field within the record. Thisis useful for the record support routines that are passed
apointer to a DBADDR structure. They can have code like the following:

switch (dbGetFi el dl ndex(pdbAddr)) {
case aoRecordVAL :

br eak;
case aoRecor dXXX:
br eak;
defaul t:

}

The C source routine aoRecor dSi zeOr f set is automatically called when a record type file is loaded into an 10C.
Thus user code does not have to be aware of this routine except for the following convention: The associate record support
module MUST include the statements:

#defi ne GEN_SI ZE OFFSET
#i ncl ude "xxxRecord. h"
#undef CEN_SI ZE OFFSET

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 113

Chapter 6: Database Definition
dbExpand

This convention ensures that the routine is defined exactly once.

6.17 dbExpand

dbExpand -1dir -Snmacsub -ooutfile filel file2 ...

Multiple - | options can be specified for an include path, and multiple - S options for macro substitution. If no output
filename is specified with - ooutfil e then the output will go to stdout. Note that the environment variable
EPI CS_DB | NCLUDE_PATH can also be used in place of the- | options.

NOTE: Thisis supported only on the host.

This command reads all theinput files and then writes a file containing the definitions for all information described by the
input files. The output content differs from the input in that comment lines do not appear and al include files are
expanded.

This routine is extremely useful if an 10C is not using NFS for the dbLoadDat abase commands. It takes more than 2
minutes to load the base/ r ec/ base. dbd fileinto an IOC if NFSis not used. If dbExpand createsalocal base. dbd
file, it takes about 7 seconds to load (25 MHZ 68040 10C).

6.18 dbL oadDatabase

dbLoadDat abase(char *dbdfil e, char *path, char *substitutions)
NOTES:

* |OC Only
» Using a path on avxWorksioc does not work very well.
* Both path and substitutions can be null.

» dbdfi | e may contain environment variable macros of the form ${ MOTOR} which will be expanded before the
fileis opened.

This command loads a database file containing any of the definitions given in the summary at the beginning of this
chapter.

As each line of dbdfile isread, the substitutions specified in substituti ons is perfformed. The
substitutions are specified as follows:

“var 1=subl, var 2=sub3, ...”
Variables are specified in the dbfile as $(variable_name). If the substitution string
"a=1,b=2,c=\"this is a test\""

were used, any variables $(a), $(b), $(c) would be substituted with the appropriate data.

6.18.1 EXAMPLE

For example, let t est .db be:

record(ai,"$(pre)testrecl")
record(ai,"$(pre)testrec2")
record(stringout,"$(pre)testrec3d") {

114 EPICS Application Developer’'s Guide 1/5/09

Chapter 6: Database Definition
dbLoadRecords

fiel d(VAL, "$(STR ")
fiel d(SCAN, "$(SCAN) ")
}
Then issuing the command:
dbLoadDat abase("test. db", 0, "pr e=TEST, STR=t est, SCAN=Passi ve")
gives the same results as loading:

record(ai, " TESTtestrecl")
record(ai, " TESTt estrec2")
record(stringout, "TESTtestrec3") {
field(VAL, "test")
fiel d(SCAN, " Passi ve")

6.19 dbL oadRecords

dbLoadRecords(char* dbfile, char* substitutions)
NOTES:

* |OC Only.

» dbfi | e must contain only record instances.

 dbfi | e may contain environment variable macros of the form ${ MOTOR} which will be expanded before the file
is opened.

6.20 dbL oadTemplate

dbLoadTenpl at e(char* tenpl at e_def)
NOTES:

* |OC Only.
» MSI can be used to expand templates on the host.

dbLoadTenpl at e reads a template definition file. This file contains rules about loading database instance files, which
contain $(xxx) macros, and performing substitutions.

t enpl at e_def contains the rules for performing substitutions on the instance files. For convenience two formats are
provided. The format is either:

file name.tenpl ate {
{ varl=subl for_setl, var2=sub2 for_setl, var3=sub3 for_setl,
{ varl=subl for_set2, var2=sub2 for_set?2, var3=sub3 for_set2,
{ varl=subl for_set3, var2=sub2 for_set3, var3=sub3 for_set3,

(S

or:

file name.tenpl ate {

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 115

Chapter 6: Database Definition
dbLoadTemplate

pattern { varl, var2, var3, ... }

{ subl for_setl, sub2 for_setl, sub3 for_setl,
{ subl _for_set2, sub2 for_set2, sub3_for_set?2,
{ subl for_set3, sub2 for_set3, sub3_ for_set3,

}

(SR

Thefirstline (fi | e nane. t enpl at e) specifies the record instance input file. The file name may appear inside double
guotation marks; these are required if the name contains any characters that are not in the following set, or if it contains
environment variable macros of the form ${ ENV_VAR_NAME} which are to be expanded before the file is opened:

a-z AZ0-9 _+ - . [\ [] <>

Each set of definitions enclosed in{} is variable substitution for the input file. The input file has each set applied to it to
produce one composite file with all the completed substitutions in it. Version 1 should be obvious. In version 2, the
variables are listed in the “pat t er n{}” line, which must precede the braced substitution lines. The braced substitution

lines contains sets which match up with the pat t er n{} line.

6.20.1 EXAMPLE

Two simple template file examples are shown below. The examples specify the same substitutions to perform:
t hi s=subl andt hat =sub2 for afirst set, and t hi s=sub3 and t hat =sub4 for a second set.

file test.tenmplate {
{ this=subil,that=sub2 }
{ this=sub3,that=sub4 }
}

file test.tenmplate {
pattern{this,that}
{subl, sub2}
{sub3, sub4 }

}

Assumethat thefilet est .t enpl at e contains:

record(ai,"$(this)record") {
fiel d(DESC, "this = $(this)")

}

record(ai,"$(that)record") {
fiel d(DESC, "this = $(that)")

}

Using dbLoadTenpl at e with either input is the same as defining the records:

record(ai, "sublrecord") {
fiel d(DESC, "this = subl")

}

record(ai, "sub2record") {
fiel d(DESC, "this = sub2")

}

record(ai, "sub3record") {
fiel d(DESC, "this = sub3")
}

record(ai, "sub4record") {

116 EPICS Application Developer’'s Guide

1/5/09

Chapter 6: Database Definition
dbReadTest

fiel d(DESC, "this = sub4")

6.21 dbReadTest

dbReadTest -1dir -Snacsub file.dbd ... file.db ...

This utility can be used to check for correct syntax in database definition and database instance files. It just reads al the
specified files

Multiple- 1, and- S options can be specified. An arbitrary number of database definition and database instance files can
be specified.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 117

Chapter 6: Database Definition
dbReadTest

118 EPICS Application Developer’'s Guide 1/5/09

Chapter 7: 10C Initialization

7.1 Overview - Environments requiring a main program

If a main program is required (most likely on all environments except vxWorks and RTEMS), then initialization is
performed by statements residing in startup scripts passed toi ocsh. An example main programis:

int main(int argc,char *argv[])
{
i f(argc>=2) {
i ocsh(argv[1]);
epi csThreadSl eep(. 2);
}
i ocsh(NULL) ;
epi csExit (0)
return O;

}

Thefirst call to i ocsh executes commands from the startup script filename which must be passed as an argument to the
program. The second call to i ocsh with a NULL argument putsi ocsh into interactive mode. This alows the user to
issue the commands described in chapter "1OC Test Facilities” aswell as some additional commands like hel p.

The command file passed is usually called the startup script, and contains statements like these:

< envPat hs

cd ${TOP}

dbLoadDat abase "dbd/ appnane. dbd"
appname_r egi st er Recor dDevi ceDri ver pdbbase

dbLoadRecords "db/file.db", "macro=val ue"
cd ${TOP}/i ocBoot/ ${1 OC}
ioclnit

The envPaths file is automatically generated in the |OC boot directory and defines several environment variables that are
useful later in the startup script. The definitions shown below are always provided; additional entries will be created for
each support module referenced in the application’s configure/REL EASE file:

epi csEnvSet (" ARCH', "l i nux- x86")

epi csEnvSet ("1 OC', "i ochane")

epi csEnvSet ("TOP", "/ path/to/ application")
epi csEnvSet (" EPI CS_BASE", "/ pat h/ t o/ base")

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 119

Chapter 7: 10C Initialization
Overview - vxWorks

7.2 Overview - vxWorks

After vxWorks is loaded at |OC boot time, commands like the following, normally in the vxWorks startup script, are
issued to load and initialize the application code:

Many vxWor ks board support packages need the foll ow ng:
#cd <full path to I OC boot directory>

< cdCommands

cd topbin

I d < appnane. munch

cd top

dbLoadDat abase " dbd/ appnane. dbd”
appnane_regi st er Recor dDevi ceDri ver pdbbase
dbLoadRecords "db/file.db", "macro=val ue"

cd startup
ioclnit

The cdCommands script is automatically generated in the 10C boot directory and defines several vxWorks global
variablesthat allow cd commands to various locations, and also sets several environment variables. The definitions shown
below are always provided; additional entries will be created for each support module referenced in the application’s
configure/REL EASE file:

startup = "/path/to/application/iocBoot/iocnhane"
put env " ARCH=vxWbr ks- 68040"

put env "1 OC=i ochane"

top = "/path/to/application”

put env "TOP=/pat h/to/ application"

topbin = "/path/to/application/bin/vxWrks-68040"
epi cs_base = "/path/to/base"

put env "EPI CS_BASE=/ pat h/ t o/ base"

epi cs_basebin = "/ path/to/ base/ bi n/ vxWr ks- 68040"

The | d command in the startup script loads EPICS core, the record, device and driver support the IOC needs, and any
application specific modules that have been linked into it.

dbLoadDat abase loads database definition files describing the record/device/driver support used by the application..
dbLoadRecor ds loads record instance definitions.

i ocl ni t initializes the various epics components and starts the |OC running.

7.3 Overview - RTEMS

RTEMS applications can start up in many different ways depending on the board-support package for a particular piece of
hardware. Systems which use the Cexp package can be treated much like vxWorks. Other systemsfirst read initialization
parameters from non-volatile memory or from a BOOTP/DHCP server. The exact mechanism depends upon the BSP.
TFTP or NFS filesystems are then mounted and the 1OC shell is used to read commands from a startup script. The
location of this startup script is specified by ainitialization parameter. This script is often similar or identical to the one
used with vxWorks. The RTEMS startup code calls

epi csRt ensl ni t PreSet Boot Confi gFr onNVRAM st ruct rtens_bsdnet _config *);

just before setting the initialization parameters from non-volatile memory, and

120 EPICS Application Developer’'s Guide 1/5/09

Chapter 7: 10C Initialization
I0C Initialization

epi csRt ensl ni t Post Set Boot Conf i gFr omNVRAM struct rtens_bsdnet _config *);

just after setting the initialization parameters. An application may provide either or both of these routines to perform any
custom initialization required. These function prototypes and some useful external variable declarations can be found in
thje header fileepi csRt ensl ni t Hooks. h

7.4 10C Initialization

An IOC is normally started with thei ocl ni t command shown in the startup scritps above, but it can also be initialized
using the i ocBui | d command, which puts it into a quiescent state without actually starting the various internal threads
from running. From this statethei oc Run command can be used to bring it online very quickly. A running 10C can also
be quiesced using the i ocPause command, which freezes all internal operations; at this point i ocRun can be used to
restart it from where it left off, or the I0C should be shut down (exit the program or reboot on vxWorks/RTEMS). Most
device support and drivers have not been written with the possibility of pausing the IOC in mind though, so this feature
may not be safe to use on an 10C which talks to external devices or software.

IOC initialization performs the following functions:

7.4.1 Set Task Flags

Sets the epi csThreadl sCkToBIl ock flag, and calls epi csSi gnal I nst al | Si gHupl gnore which on Unix
architectures prevents the process from shutting down when it received a HUP signal.

At thispoint, i ni t Hooks(i ni t HookAt Begi nni ng) iscalled.

7.4.2 General Purpose Modules

Callscor eRel ese which prints a message showing which version of iocCoreis being used.

Callst askwdl ni t to start the task watchdog. This accepts requests to watch other tasks. It runs periodically and checks
to seeif any of the tasks is suspended. If so it issues an error message, and can also optionally invoke callback routines
registered by the task itself or by other software that is interested in the state of the IOC. See “Task Watchdog” on
page 237 for details.

Starts the general purpose callback tasks by calling cal | backl ni t. Three tasks are started at different scheduling
priorities.
i ni t Hooks(i ni t HookAft er Cal | backl nit) iscalled.

7.4.3 Channel AccessLinks

CallsdbCali nkl ni t . Theinitializes the module that handles database channel access links, but does not alow its task
to run yet.

i ni t Hooks (i ni t HOOKAf t er CaLi nklnit) iscalled.

7.4.4 Driver Support

i ni t Dr vSup locates each device driver entry table and callsthei ni t routine of each driver.
i ni t Hooks(i nit HookAfterlnitDrvSup) iscaled.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 121

Chapter 7: 10C Initialization
I0C Initialization

7.4.5 Record Support

i ni t RecSup locates each record support entry table and callsthei ni t routine of each record type.
i ni t Hooks(i nit HookAfterlnitRecSup) iscaled.

7.4.6 Device Support

i ni t DevSup locates each device support entry table and callsthei ni t routine with an argument specifying that thisis
theinitial call.

i ni t Hooks(i nit HookAfterlnitDevSup) iscaled.

7.4.7 Database Records

i ni t Dat abase makes three passes over the database performing the following functions:

1. Initiaizesthe fields RSET, RDES, MLCK, MLI S, PACT and DSET for each record.
Callsrecord support’si ni t _record (first pass).

2. Convert each PV_LI NKintoaDB LI NKor CA LI NK
Calls any extended device support’'sadd_r ecor d routine.

3. Callsrecord support’si ni t _recor d (second pass).
Finally i ni t Dat abase registers an epicsAtEXxit routine to shut down the database when the 10C application exits.
Next dbLockl ni t Recor ds iscalled to create the lock sets.
Then dbBkpt I ni t isrunto initialize the database debugging module.
i ni t Hooks(i nit HookAfterlnitDat abase) iscalled.

7.4.8 Device Support again

i ni t DevSup locates each device support entry table and callsthei ni t routine with an argument specifying that thisis
thefinish call.

i ni t Hooks(i ni t HOOKAft er Fi ni shDevSup) iscalled.

7.4.9 Scanning and Access Security

The periodic, event, and |/O event scanners are initialized by calling scanl ni t , but the scan tasks are not allowed to run
yet.

A call toasl ni t initailizes access security. If this reports failure, the IOC initialization is aborted.
dbPut Not i fyl ni t initializes support for put notification.
After ashort delay, i ni t Hooks(i ni t HookAft er Scanl ni t) iscalled.

7.4.10 I nitial Processing

i nitial Process processesall recordsthat have PINI set true.
i ni t Hooks(initHookAfterlnitial Process) iscaled.

122 EPICS Application Developer’'s Guide 1/5/09

Chapter 7: 10C Initialization
IOC Pausing

7.4.11 Channel Access Server

The Channel Access server is started by callingr srv_i ni t, but its tasks are not allowed to run so it does not announce
its presence to the network yet.

At this point, the IOC has been initialized but is still quiescent. If started with i ocBui | d this command completes here.

7.4.12 Enable Record Processing

If thei ocRun command is used to bring the IOC out of itsinitial quiescent state, it starts here.

The routines scanRun and dbCaRun are called in turn to enable their associated tasks.

The global variablei nt er r upt Accept isset TRUE. Until thistime all 1/O interrupts have been ignored.
If the IOC is starting for the first time, i ni t Hooks(i ni t HookAft er | nt er rupt Accept) iscaled.

7.4.13 Enable CA Server

The Channel Access server tasks are allowed to run by callingr srv_run.
If the IOC is starting for the first time, i ni t Hooks(i ni t HookAt End) iscalled.

7.510C Pausing

The command i ocPause bringsarunning |OC to aquiescent state with all record processing frozen (other than possibly
the completion of asynchronous 1/0 operations). A paused |0OC may be able to be restarted using thei oc Run command,
but whether this succeeds or not can depend on how long it has been quiescent and the status of any device drivers which
have been running. The operations which make up the pause operation are as follows:

1. Pause the Channel Access Server tasks by callingr srv_pause

2. Set the global variablei nt er r upt Accept to FALSE.
3. Call dbCaPause and scanPause to pause their associated tasks.

7.6 Changing iocCore fixed limits

The following commands can be issued after iocCore is loaded to change iocCore fixed limits. The commands should be
given before any dbL.oad commands.

cal | backSet QueueSi ze(si ze)
dbPvdTabl eSi ze(si ze)
scanOnceSet QueueSi ze(si ze)
errloglnit(buffersize)

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 123

Chapter 7: 10C Initialization
initHooks

7.6.1 callback SetQueueSize

Requests for the general putpose callback tasks are placed in aring buffer. This command can be used to set the size for
the ring buffers. The default is 2000. A message is issued when aring buffer overflows. It should rarely be necessary to
override this default. Normally the ring buffer overflow messages appear when a callback task fails.

7.6.2 dbPvdTableSize

Record instance names are stored in a process variabl e directory, which is a hash table. The default number of hash entries
is512. dbPvdTabl eSi ze can be called to change the size. It must be called before any dbLoad commands and must
be a power of 2 between 256 and 65536. If an |OC contains very large databases (several thousand records) then a larger
hash table size speeds up searches for records.

7.6.3 scanOnceSetQueueSize

scanOnce requests are placed in aring buffer. This command can be used to set the size for the ring buffer. The default
is 1000. It should rarely be necessary to override this default. Normally the ring buffer overflow messages appear when
the scanOnce task fails.

7.6.4 errloglnit

This overrides the default buffer size for the errlog message queue. The default is 1280 bytes.

7.7 initHooks

The inithooks facility allows application functions to be called at various states during ioc initialization. The states are
defined in initHooks.h, which contains the following definitions:

typedef enum {

i ni t HookAt Begi nni ng,

ni t HookAf t er Cal | backl nit,

ni t Hook Af t er CaLi nkl ni t,

ni t HookAf t er I ni t Dr vSup,

ni t HookAf t er I ni t RecSup,

ni t HookAf t er I ni t DevSup,

ni t HookAf t er I ni t Dat abase,

ni t Hook Af t er Fi ni shDevSup,

ni t HookAf t er Scanl ni t,

ni t HookAfterlInitial Process,
ni t HookAf t er I nt er r upt Accept,
ni t Hook At End

}init HookSt at e;

typedef void (*initHookFunction)(initHookState state);
i nt initHookRegi ster(initHookFunction func);
const char *initHookNanme(initHookState state);

124 EPICS Application Developer’'s Guide 1/5/09

Chapter 7: 10C Initialization
Environment Variables

Any functions that are registered beforei ocl ni t reaches the desired state will be called when it reaches that state. The
i ni t HookNane function returns a static string representation of the state passed into it which is intended for printing.
The following skeleton code shows how to use this facility:

static initHookFunction myHookFuncti on;

i nt myHookl nit (voi d)
{
return(initHookRegi st er(nmyHookFunction));

}

static void nyHookFunction(initHookState state)
{
switch(state) {
case i nitHookAfterlnitRecSup:
br eak;
case i nitHookAfterlnterruptAccept:
br eak;
defaul t:
br eak;

}
}

An arbitrary number of functions can be registered.

7.8 Environment Variables

Various environment variables are used by iocCore:

EPI CS_CA_ADDR LI ST
EPI CS_CA_AUTO ADDR LI ST
EPI CS_CA_CONN_TMD

EPI CS_CAS_BEACON_PERI OD
EPI CS_CA_REPEATER_PORT
EPI CS_CA_SERVER_PORT

EPI CS_CA_MAX_ARRAY BYTES
EPI CS_TS_NTP_I NET

EPI CS_I| OC_LOG_PORT

EPI CS_I| OC_LOG | NET

For an explanation of the EPI CS_CA ... and EPI CS_CAS ... variables see the EPICS Channel Access Reference
Manual. For an explaination of the EPI CS_| OC LOG ... variables see “iocLogClient” on page 168 of this manual.
EPI CS_TS NTP_I NET is used only on vxWorks and RTEMS, where it sets the address of the Network Time Protocol
server. If it isnot defined the 10C uses the boot server asits NTP server.

These variables can be set through iocsh viathe epi csEnvSet command, or on vxWorks using put env. For example:
epi csEnvSet (" EPI CS_CA CONN_TMO, "10")

All epi csEnvSet commands should be issued after iocCore isloaded and before any dbL oad commands.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 125

Chapter 7: 10C Initialization
Initialize Logging

The following commands can be issued to iocsh:
epi csPrt EnvPar ans - This shows just the environment variables used by iocCore.

epi csEnvShow- Thisshows all environment variables on your system.

7.9 Initialize Logging
Initialize the logging system. See chapter "IOC Error Logging” for details. The following can be used to direct the log
client to use a specific host log server.

epi csEnvSet ("EPI CS_| OC_LOG _PORT", "<port >")
epi csEnvSet ("EPICS_| OC LOG | NET", "<i net addr>")

These command must be given immediately after iocCore isloaded.
To start logging you must issue the command:

i ocLogl ni t

126 EPICS Application Developer’'s Guide 1/5/09

Chapter 8. Access Security

8.1 Overview

This chapter describes access security. i.e. the system that limits access to |0OC databases. It consists of the following
sections:

1
. Quick start - A summary of the steps necessary to start access security.
. User's Guide - This explains what access security is and how to useit.
. Design Summary - Functional Requirements and Design Overview.

. Application Programmer’s Interface

0NN WN

Overview - This section

Database Access Security - Access Security features for EPICS |OC databases.

. Channel Access Security - Access Security featuresin Channel Access
. Trapping Channel Access Writes - Thisallows trapping of all writes from external channel access clients.
9.

Implementation Overview

The requirements for access security were generated at ANL/APSin 1992. The requirements document is:
EPICS: Channel Access Security - Functional Requirements, Ned D. Arnold, 03/-9/92.
This document is available through the EPICS website.

8.2 Quick Start

In order to “turn on” access security for a particular 10C the following must be done:

Create the access security file.
1OC databases may have to be modified
* Record instances may have to have values assigned to field ASG. If ASG is null the record is in group
DEFAULT.
» Access security files can be reloaded after ioclnit via a subroutine record with asSubl nit and
asSubPr ocess asthe associated subroutines. Writing the value 1 to this record will cause a reload.
The vxWorks startup file must contain the following command before ioclnit.
asSet Fi | enanme(“accessSecurityFile”)
Thefollowing is an optional command.
asSet Substitutions(“varl=subl, var2=sub2,..."))

The following rules decide if access security isturned on for an 10C:

If asSetFilename is not executed before ioclnit, access security will NEVER be started..

If asSetFile is given and any error occurs while first initializing access security, then ALL access to that ioc is
denied.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 127

Chapter 8: Access Security
User’s Guide

* If after successfully starting access security, an attempt is made to restart and an error occurs then the previous
access security configuration is maintained.

After an 1OC has been booted with access security enabled, the access security rules can be changed by issuing the
asSetFilename, asSetSubstitutions, and aslnit. The functions aslnitiaize, aslnitFile, and aslnitFP, which are described
below, can also be used.

8.3 Usar’'s Guide

8.3.1 Features

Access security protects |OC databases from unauthorized Channel Access Clients. Access security is based on the
following:
» Who: Userid of the channel access client.

» Where: Hostid where the user is logged on. This is the host on which the channel access client exists. Thus no
attempt is made to seeif auser islocal or isremotely logged on to the host.

» What: Individual fields of records are protected. Each record has a field containing the Access Security Group
(ASG) to which the record belongs. Each field has an access security level, which must be 0 or 1.The security level
is defined in the ascii record definition file. Thus the access security level for a field is the same for all record
instances of arecord type.

» When: Accessrules can contain input links and calculations similar to the calculation record.

8.3.2 Limitations

An |0C database can be accessed only via Channel Access or viathe vxWorks or ioc shell. It is assumed that accessto the
local 10C console is protected via physical security and t el net /r | ogi n access protected via normal networking and
physical security methods.

No attempt has been made to protect against the sophisticated saboteur. Network security methods must be used to limit
access to the subnet on which the iocs reside.

8.3.3 Definitions

This document uses the following terms:

* ASL: Access Security Level (Called access level in Req Doc)
» ASG: Access Security Group (Called PV Group in Reg Doc)
* UAG: User Access Group
* HAG: Host Access Group

8.3.4 Access Security Configuration File

This section describes the format of afile containing definitions of the user access groups, host access groups, and access
security groups. An |OC creates an access configuration database by reading an access configuration file (the extension
.acf isrecommended). Letsfirst give asimple example and then a complete description of the syntax.

128 EPICS Application Developer’'s Guide 1/5/09

Chapter 8: Access Security
User’s Guide

8.3.4.1 Simple Example

UAG(uag) {userl, user?2}
HAG(hag) {host 1, host 2}
ASG DEFAULT) {

RULE(1, READ)

RULE(1, WRI TE) {

UAG uag)
HAG(hag)

}

These rules provide read access to anyone located anywhere and write accessto user 1 and user 2 if they are located at
host 1 or host 2.

8.3.4.2 Syntax Definition
In the following description:

[1T Surroundsoptiona elements
[Separates alternatives
Means that an arbitrary number of definitions may be given.

Any line beginning with a# character is a comment

The elements <name>, <user>, <host>, <pvname>, and <calculation> can be given a quoted or unquoted strings. The
rules for unquoted strings are the same as for database definitions.

UAG <nane>) [{ <user> [, <user> ...] }]
HAG(<nanme>) [{ <host> [, <host> ...] }]

ASE <name>) [{
[I NP<i ndex>(<pvname>)
ol
RULE(<l evel >, NONE | READ | WRITE [, NOTRAPWRI TE | TRAPWRI TE]) {
[UAG <nane> [, <nane> ...])]
[HAG(<nanme> [, <nanme> ...])]
CALC(<cal cul ati on>)

1

8.3.4.3 Discussion

* UAG: User Access Group. Thisis a list of user names. The list may be empty. The same user can appear in
multiple UAGs. For vxWorks iocs the user name is taken from the user field of the boot parameters.

* HAG: Host Access Group. This is a list of host names. It may be empty. The same host name can appear in
multiple HAGs. For iocs the host name is taken from the target name of the boot parameters. NOTE: host names
are converted to lower case.

* ASG: An access security group. The group "DEFAULT” is a specia case. If a member specifies a null group or a
group which has no ASG definition then the member is assigned to the group " DEFAULT”.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 129

Chapter 8: Access Security
User’s Guide

¢ INP<index> Index must have one of the values “A” to “L”. These are just like the | NP fields of a
calculation record. It is necessary to define | NP fieldsif a CALCfield is defined in any RULE for the ASG.

* RULE This defines access permissions. <I evel > must be 0 or 1. Permission for alevel 1 field implies
permission for level O fields. The permissions are NONE, READ, and Rl TE. WRI TE permission implies
READ permission. The standard EPICS record types have all fields set to level 1 except for VAL, CVD
(command), and RES (reset). An optional argument specifies if writes should be trapped. See the section
below on trapping Channel Access writes for how thisis used. If not given the default is NOTRAPWRITE.

» UAG gpecifies alist of user access groups that can have the access privilege. If UAG is not defined
then all users are allowed.

* HAG specifies alist of host access groups that have the access privilege. If HAG is not defined then
all hosts are allowed.

» CALC isjust likethe CALCfield of acalculation record except that the result must evaluate to TRUE
or FALSE. The rule only applies if the calculation result is TRUE, where the actual test for TRUE is
(0.99 < result < 1.01).Anything elseis regarded as FALSE and will cause the rule to be
ignored. Assignment statements are not permitted in CALC expressions here.

Each 10C record contains a field ASG which specifies the name of the ASG to which the record belongs. If thisfield is
null or specifies agroup which is not defined in the access security file then the record is placed in group " DEFAULT”.

The access privilege for a channel access client is determined as follows:

1. The ASG associated with the record is searched.

2. Each RULE is checked for the following:
a. Thefield'slevel must be less than or equal to the level for this RULE.
b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined all users are
accepted.
c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined al hosts are

accepted.

d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fields associated
with this calculation are in INVALID alarm severity the calculation is considered false. The actual test for
TRUE is.99 < result < 1.01.

3. The maximum access allowed by step 2 is the access chosen.

Multiple RULEs can be defined for a given ASG, even RULEs with identical levels and access permission.

8.3.5 ascheck - Check Syntax of Access Configuration File

After creating or modifying an access configuration file it can be checked for syntax errors by issuing the command:
ascheck -S “xxx=yyy,...” < "filenane"

ThisisaUnix command. It displays errors on st dout . If no errors are detected it prints nothing. Only syntax errors not
logic errors are detected. Thusitisstill possibleto get your self in trouble. Theflag- S means a set of macro substitutions
may appear. Thisisjust like the macro substitutions for dbL oadDatabase.

8.3.6 10C Access Security Initialization

In order to have access security turned on during 10C initialization the following command must appear in the startup file
beforei ocl ni t iscalled:

asSet Fi | enanme("<access security file>")

If this command does not appear then access security will not be started by i ocl ni t . If an error occurswhen ioclnit calls
asl ni t than all accessto theiocisdisabled, i.e. no channel access client will be able to accesstheioc.

130 EPICS Application Developer’'s Guide 1/5/09

Chapter 8: Access Security
User’s Guide

Access security also supports macro substitution just like dbLoadDat abase. The following command specifies the
desired substitutions:

asSet Substitutions(“varl=subl, var2=sub2,...”)
This command must be issued beforei ocl ni t .

After an 10C is initialized the access security database can be changed. The preferred way is via the subroutine record
described in the next section. It can also be changed by issuing the following command to the vxWorks shell:

aslnit

It is also possible to reissue asSet Fi | enane and/or asSet Substit uti ons beforeasl nit. If any error occurs
during asl ni t the old access security configuration is maintained. It is NOT permissable to call asl nit before
i oclnit iscalled.

Restarting access security after ioc initialization is an expensive operation and should not be used as a regular procedure.

8.3.7 Database Configuration

8.3.7.1 Access Security Group

Each database record has a field ASGwhich holds a character string. Any database configuration tool can be used to give
avalueto thisfield. If the ASG of arecord is not defined or is not equal to a ASG in the configuration file then the record
isplaced in DEFAULT.

8.3.7.2 Subroutine Record Support

Two subroutines, which can be attached to a subroutine record, are available (provided withi ocCor e):

asSubl ni t
asSubPr ocess

NOTE: These subroutines are automatically registered thus do NOT put a r egi strar definition in your database
definition file.

If arecord is created that attaches to these routines, it can be used to force the IOC to load a new access configuration
database. To change the access configuration:

1. Modify the file specified by the last call to asSet Fi | enane so that it contains the new configuration desired.
2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel access.
The following action is taken:

3. When thevalueisfound tobe 1, asl ni t iscaled and the value set back to 0.

4. The record is treated as an asynchronous record. Completion occurs when the new access configuration has been
initialized or atime-out occurs. If initialization fails the record is placed into alarm with a severity determined by
BRSV.

8.3.7.3 Record Type Description

Each field of each record type has an associated access security level of ASLO or ASL1. See the chapter “Database
Definition” for details.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 131

Chapter 8: Access Security
User’s Guide

8.3.8 Example:

Letsdesign a set of rulesfor aLinac. Assume the following:

1. Anyone can have read accessto al fields at anytime.

2. Linac engineers, located in the injection control or control room, can have write accessto most level O fieldsonly if
the Linac is not in operational mode.

3. Operators, located in the injection control or control room, can have write access to most level 0 fields anytime.

4. The operations supervisor, linac supervisor, and the application developers can have write access to al fields but
must have some way of not changing something inadvertently.

5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed under tighter control.
These will follow rules 1 and 4 but not 2 or 3.

6. 10C channel access clients always have level 1 write privilege.

Most Linac 10C records will not have the ASGfield defined and will thus be placed in ASG “DEFAULT". The following
records will have an ASG defined:

* LI : OPSTATE and any other records that need tighter control have ASG="cri ti cal ". One such record could be
a subroutine record used to cause a new access configuration file to be loaded. LI _OPSTATE has the value (0,1)
if the Linac is (not operational, operational).

e Ll:levlipermt has ASG="pernit". In order for the opSup, | i nacSup, or an appDev to have write
privilege to everything this record must be set to the value 1.

The following access configuration satisfies the above rules.

UAGop) {opl, op2, superguy}
UAG opSup) {superguy}
UAG |l i nac) {waw, nassiri,grelick, berg, fuja, gsn}
UAG | i nacSup) {gsni
UAG appDev) {nda, kko}
HAG(icr) {silver, phebos, gaea}
HAG(cr) {mars, hera, gol d}
HAG(ioc) {ioclicl,ioclic2,ioclidl,ioclid2,ioclid3,ioclid4,ioclid5}
ASG(DEFAULT) {
| NPA(LI : OPSTATE)
I NPB(LI:levlipermt)
RULE(0, WRI TE) {
UAG(op)
HAG(i cr, cr)
CALC(" A=1")
}
RULE(0, WRI TE) {
UAE op, | i nac, appdev)
HAG(i cr, cr)
CALC(" A=0")
}
RULE(1, WRI TE) {
UAG opSup, | i nacSup, appdev)
CALC("B=1")
}
RULE(1, READ)
RULE(1, WRI TE) {
HAG(i oc)
}

132 EPICS Application Developer’'s Guide 1/5/09

Chapter 8: Access Security
Design Summary

}
ASE permit) {
RULE(0, WRI TE) {
UAG opSup, | i nacSup, appDev)
}
RULE(1, READ)
RULE(1, WRI TE) {
HAG(i oc)
}
}
ASEcritical) {
I NPB(LI:levlipermt)
RULE(1, WRI TE) {
UAG opSup, | i nacSup, appdev)
CALC("B=1")
}
RULE(1, READ)
RULE(1, WRI TE) {
HAG(i oc)
}

8.4 Design Summary

8.4.1 Summary of Functional Requirements

A brief summary of the Functional Requirementsis:

1. Each field of each record type is assigned an access security level.
2. Each record instance is assighed to a unique access security group.
3. Each user isassigned to one or more user access groups.

4. Each node is assigned to a host access group.

5. For each access security group a set of access rules can be defined. Each rule specifies:
a. Access security level
b. READ or READ/WRITE access.
c. Anoptional list of User Access Groups or * meaning anyone.
d. An optional list of Host Access Groups or * meaning anywhere.
e. Conditions based on values of process variables

8.4.2 Additional Requirements

8.4.2.1 Performance

Although the functional requirements doesn’t mention it, a fundamental goal is performance. The design provides almost
no overhead during normal database access and moderate overhead for the following: channel access client/server
connection, ioc initialization, a change in value of a process variable referenced by an access calculation, and dynamically

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 133

Chapter 8: Access Security
Design Summary

changing a records access control group. Dynamically changing the user access groups, host access groups, or the rules,
however, can be atime consuming operation. Thisis done, however, by alow priority |OC task and thus does not impact
normal ioc operation.

8.4.2.2 Generic Implementation

Access security should be implemented as a stand alone system, i.e. it should not be imbedded tightly in database or
channel access.

8.4.2.3 No Access Security within an 10C

Within an 1OC no access security isinvoked. This means that database links and local channel access clients calls are not
subject to access control. Also test routines such as dbgf should not be subject to access contral.

8.4.2.4 Defaults

It must be possible to easily define default access rules.

8.4.2.5 Access Security is Optional

When an IOC isinitialized, access security is optional.

8.4.3 Design Overview

The implementation provides a library of routines for accessing the security system. This library has no knowledge of
channel access or 10C databases, i.e. it is generic. Database access, which is responsible for protecting an 10C database,
calls library routines to add each 10C record to one of the access control groups.

Lets briefly discuss the access security system and how database access and channel access interact with it.

8.4.3.1 Configuration File

User access groups, host access groups, and access security groups are configured viaan ASCII file.

8.4.3.2 Access Security Library

The access security library consists of the following groups of routines: initialization, group manipulation, client
manipulation, access computation, and diagnostic. The initialization routine reads a configuration file and creates a
memory resident access control database. The group manipulation routines allow members to be added and removed from
access groups. The client routines provide services for clients attached to members.

8.4.3.310C Database Access Security

The interface between an |OC database and the access security system.

8.4.3.4 Channel Access Security

Whenever the Channel Access broadcast server receives a ca_sear ch request and finds the process variable, it calls
asAddd i ent . Whenever it disconnectsit callsasRenmoved i ent . Whenever it issues a get or put to the database it
must call asCheckGet or asCheckPut .

134 EPICS Application Developer’'s Guide 1/5/09

Chapter 8: Access Security
Access Security Application Programmer’s Interface

8.4.4 Comments

Itislikely that the access rules will be defined such that many 10Cs will attach to a common process variable. As aresult
the 10C containing the PV will have many CA clients.

What about password protection and encryption? | maintain that thisis a problem to be solved in alevel above the access
security described in this document. Thisisthe issue of protecting against the sophisticated saboteur.

8.4.5 Performance and Memory Requirements

Performance has not yet been measured but during the tests to measure memory usage no noticeable change in
performance during ioc initialization or during Channel Access clients connection was noticed. Unless access privilegeis
violated the overhead during channel access gets and putsis only an extra comparison.

In order to measure memory usage, the following test was performed:

1. A database consisting of 5000 soft analog records was created.

2. A channel access client (caput) was created that performs ca_put s on each of the 5000 channels. Each time it
begins a new set of puts the value increments by 1.

3. A channel access client (caget) was created that has monitors on each of the 5000 channels.
The memory consumption was measured beforei ocl ni t, after i ocl ni t, after caput connected to al channels, and

after caget connected to al 5000 channels. This was done for APS release 3.11.5 (before access security) and the first
version which included access security. The results were:

R3.11.5 After
Beforeioclnit 4,244,520 4,860,840
After ioclnit 4,995,416 5,964,904
After caput 5,449,780 6,658,868
After caget 8,372,444 9,751,796

Before the database was loaded the memory used was 1,249,692 bytes. Thus most of the memory usage before ioclnit
resulted from storage for records. The increase since R3.11.5 results from added fields to dbConmon. Fields were added
for access security, synchronous time support and for the new caching put support. The other increases in memory usage
result from the control blocks needed to support access control. The entire design was based on maximum performance.
Thisresulted in increased memory usage.

8.5 Access Security Application Programmer’s | nterface

8.5.1 Introduction

FileasLi b. h describes the access security data structures and the last section of this chapter has a diagram describing
the relationship between the structures. The structures are:

» ASBASE - Containsthe list head for lists of UAGs, HAGs, and ASGs

* UAG - A user access group.

* HAG - A host access group

» ASG - An access secuity group. It containsthe list head for ASGINPs, ASGRUL Es, and ASGMEMBERS
ASGINP - Contains the information for an INPx.

ASGRULE - Contains theinformation for arule

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 135

Chapter 8: Access Security
Access Security Application Programmer’s Interface

* ASGMEMBER - Contains the information for amember of an access secururity group. It contains the list head for
ASGCLIENTS.

All structures except ASGMEMBER and ASGCLIENT are created by the access security library itself when it reads an
access security file. An ASGMEMBER is created each time asAddMember is called by code that interfaces to the
database. An ASGCLIENT is created each time asAddClient is called by a channel access server.

8.5.2 Definitions

The following are descriptions of arguments of routines described later.

t ypedef struct asgMenber * ASMEMBERPVT;
t ypedef struct asgCdient *ASCLI ENTPVT;
typedef int (*ASINPUTFUNCPTR) (char *buf,int max_size);
t ypedef enuni
asClient COAR /*Change of access rights*/
/*For now this is all*/
} asdient Status;
typedef void (*ASCLI ENTCALLBACK) (ASCLI ENTPVT, asd i ent St at us) ;

8.5.3 Initialization

I ong aslnitialize(ASI NPUTFUNPTR i nput Functi on)
long aslnitFile(const char *fil enane, const char *substitutions)
| ong aslnitFP(FILE *fp, const char *substitutions)

These routines read an access definition file and perform all initialization necessary. The caller must provide a routine to
provideinput linesforasl nitialize. aslnitFile andasl nitFP dother owninput and also perform macro
substitutions.

The initilization routines can be called multiple times. If an access system aready exists the old definitions are removed
and the new one initialized. Existing members are placed in the new ASGs.

8.5.4 Group manipulation

The routines are called by code that knows how to associate ASG names with the database. In the case of |0C databases,
dbCommon has afield ASG. At IOC initialization a call is made to asAddMember for every record instance in the IOC
database.
8.5.4.1 add Member

| ong asAddMenmber (ASMEMBERPVT *ppvt, const char *asgNane);

This routine adds a new member to ASG asgNane. The calling routine must provide storage for ASMEMBERPVT. Upon
successful return *ppvt will be equal to the address of storage used by the access control system. The access system
keeps an orphan list for all asgNamnres not defined in the access configuration.

The caller must provide permanent storage for asgNane.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.4.2 remove Member
| ong asRermoveMenber (ASMEMBERPVT *ppvt);

136 EPICS Application Developer’'s Guide 1/5/09

Chapter 8: Access Security
Access Security Application Programmer’s Interface

This routine removes a member from an access control group. If any clients are still present it returns an error status of
S asLib_clientExists without removing the member.

Thisroutinereturns S_asLib_asNotActive without doing anything if access control is not active.

8.5.4.3 get Member Pvt
voi d *asGet Menber Pvt (ASMEMBERPVT pvt);

For each member, the access system keeps a pointer that can be used by the caller. This routine returns the value of the
pointer.

Thisroutine returns NULL if access security is not active

8.5.4.4 put Member Pvt
| ong asPut Menber Pvt (ASMEVMBERPVT pvt, void *userPvt);
Thisroutineis used to set the pointer returned by asGetMemberPuvt.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.4.5 change Group

| ong asChangeG oup(ASMEMBERPVT *ppvt, const char *newAsgNane);
This routine changes the group for an existing member. The access rights of all clients of the member are recomputed.
The caller must provide permanent storage for newAsgNane.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.5 Client Manipulation

Thiscodeis called by a channel access server.

8.5.5.1 add Client

[ong asAddd i ent (ASCLI ENTPVT *ppvt, ASMEMBERPVT pvt,int asl,
const char *user, char*host);

This routine adds a client to an ASG member. The calling routine must provide storage for ASCLI ENTPVT.
ASMEMBERPVT is the value that was set by calling asAddMenber . The database code and the server code must develop
a convention that allows the server code to locate the ASVEMBERPVT. For |OC databases, ASMEMBERPVT is kept in
dbCommon. asl isthe access security level.

The caller must provide permanent storage for user and host . Note that user is "const char *" but host isjust "char *".
The reason is the host names are converted to lower case.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.5.2 change Client

| ong asChanged i ent (ASCLI ENTPVT ppvt,int asl,
const char *user, char*host);

This routine changes one or more of thevaluesasl , user, and host for an existing client. Again the caller must provide
permanent storage for user and host. It is permissible to use the same user and host used in the cal to
asAddd i ent with different values.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 137

Chapter 8: Access Security
Access Security Application Programmer’s Interface

8.5.5.3 remove Client
| ong asRenoved i ent (ASCLI ENTPVT *pvt);
This call removes aclient.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.5.4 get Client Pvt
voi d *asCet O i ent Pvt (ASCLI ENTPVT pvt);

For each client, the access system keeps a pointer that can be used by the caller. This routine returns the value of the
pointer.

Thisroutine returns NULL if access security is not active.

8.5.5.5 put Client Pvt
voi d asPut dient Pvt (ASCLI ENTPVT pvt, void *userPvt);
Thisroutineis used to set the pointer returned by asCGet d i ent Pvt .

8.5.5.6 register Callback

| ong asRegi sterdientCall back(ASCLI ENTPVT pvt,
ASCLI ENTCALLBACK pcal | back) ;

This routine registers a callback that will be called whenever the access privilege of the client changes.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.5.7 check Get
| ong asCheckGet (ASCLI ENTPVT pvt);
Thisroutine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn't have) get accessrights.

8.5.5.8 check Put
| ong asCheckPut (ASCLI ENTPVT pvt);
This routine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn’'t have) put access rights.

8.5.5.9 asTrapWriteBefore and asTrapWriteAfter

void *asTrapW it eBef ore(ASCLI ENTPVT cl i ent Pvt,
const char *userid, const char *hostid, void *serverSpecific);
void *asTrapWiteAfter(void *trapPvt);

These routines must be caled before and after any write performed for a client. The vaue returned by
asTrapW i t eBef or e must be the value passed to as Tr apW i t eAf t er . The severSpecific argument is assigned to
theser ver Speci fi c field of theasTr apW i t eMessage described below.

8.5.6 Access Computation

8.5.6.1 compute all Asg
| ong asComput eAl | Asg(void);

138 EPICS Application Developer’'s Guide 1/5/09

Chapter 8: Access Security
Access Security Application Programmer’s Interface

Thisroutine calls asConput eAsg for each access security group.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.6.2 compute Asg
| ong asComput eAsg(ASG *pasgq) ;

Thisroutine calculates all CALC entriesfor the ASGand callsasConput e for each client of each member of the specified
access security group.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.6.3 compute access
rights

| ong asComput e(ASCLI ENTPVT pvt);

This routine computes the access rights of a client. This routine is normally called by the access library itself rather than
use code.

ThisroutinereturnsS_asLi b_asNot Act i ve without doing anything if access control is not active.

8.5.7 Diagnostics

8.5.7.1 Dump

int asbunp(voi d (*menber) (ASVEMBERPVT) ,
voi d (*client)(ASCLI ENTPVT),int verbose);

i nt asbDunpFP(FILE *fp, void (*menber) (ASMEMBERPVT),
voi d (*client)(ASCLI ENTPVT),int verbose);

These routines print the current access security database. If verbose is 0 (FALSE), then only the information obtained
from the access security fileis printed.

If verbose is TRUE then additional information is printed. The value of each | NP is displayed. The list of members
belonging to each ASG and the clients belonging to each member are displayed. If member callback is specified as an
argument, then it is called for each member. If client callback is specified, it is called for each access security client.
8.5.7.2 Dump UAG

i nt asDunpUag(char *uagnane)
i nt asDumpUagFP(FI LE *fp, char *uagnane)

These routines display the specified UAGor if uagnane is NULL each UAGdefined in the access security database.

8.5.7.3 Dump HAG

i nt asDunpHag(char *hagnane)
i nt asDunpHagFP(FI LE *fp, char *hagnane)

These routines display the specified UAGor if uagnane is NULL each UAGdefined in the access security database.

8.5.7.4 Dump Rules

i nt asDunmpRul es(char *asgnane)
i nt asDunpRul esFP(FI LE *fp, char *asgnane)

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 139

Chapter 8: Access Security
Database Access Security

These routines display the rulesfor the specified ASGor if asgnarmne isNULL the rulesfor each ASG defined in the access
security database.

8.5.7.5 Dump member

i nt asDunpMem(char *asgnane,

voi d (*mencal | back) (ASMEMBERPVT) ,int clients)
i nt asDunpMentP(FI LE *fp, char *asgnane,

voi d (*mencal | back) (ASMEMBERPVT) ,int clients)

This routine displays the member and, if clientsis TRUE, client information for the specified ASGor if asgnarne is NULL
the member and client information for each ASG defined in the access security database. It also calls mental | back for
each member if thisargument is not NULL.

8.5.7.6 Dump hash table

i nt asDunpHash(voi d)
i nt asDunpHash(FILE *fp, voi d)

These show the contents of the hash table used to locate UAGs and HAGs,

8.6 Database Access Security

8.6.1 Access L evel definition

The definition of access level means that alevel is defined for each field of each record type.

1. Structure f | dDes (dbBase.h), which describes the attributes of each field, contains a field access security
_l evel . Inaddition definitions exist for the symbols: ASLO and ASL1.

2. Each field description in arecord description contains a field with the value ASLX.
The meanings of the Access Security Level definitions are as follows:

» ASLOASsigned to fields used during normal operation

» ASL1Assigned to fields that may be sensitive to change. Permission to access this level implies permission for
ASLO.

Most record types assign ASL asfollows: The fields VAL, RES (Reset), and CVD use the value ASLO. All other fields use
ASL1.

8.6.2 Access Security Group definition

dbConmon contains the fields ASG and ASP. ASG (Access Security Group) is a character string. The value can be
assigned via a database configuration tool or else a utility could be provided to assign values during ioc initialization. ASP
is an access security private field. It contains the address of an ASGVEMBER.

8.6.3 Access Client Definition

Struct dbAddr contains a field asPvt , which contains the address of an ASGCLI ENT. This definition is aso added to
struct db_addr so that old database access a so supports access security.

140 EPICS Application Developer’'s Guide 1/5/09

Chapter 8: Access Security
Database Access Security

8.6.4 Database Access Library

Two files asDbLi b.c and asCa.c implement the interface between |OC databases and access control. It contains the
following routines:
8.6.4.1 Initialization

int asSetFi | enane(char *acf)

Calling this routine sets the filename of an access configuration file. The next call to asl ni t usesthisfile. This routine
must be called beforei ocl ni t otherwise access configuration is disabled. Is access security is disabled during ioclnit it
will never be turned on.

i nt asSet Substitutions(char *substitutions)

This routine specifies macro substitutions.

int aslnit()
i nt aslnitAsyn(ASDBCALLBACK *pcal | back)

Thisroutines call asl ni ti al i ze. If the current access configuration file, as specified by asSet Fi | enane, is NULL
then the routine just returns, otherwise the configuration file is used to create the access configuration database.

This routine is called by i oclnit. aslnit can aso be called at any time to change the access configuration
information.

asl ni t Asyn spawns atask asl ni t Task to perform the initialization. This allows asl ni t Asyn to be called from a
subroutine called by the process entry of a subroutine record. asl ni t Task callst askwdl nsert so that if it suspends
for some reason t askwd can detect the failure. After initialization all records in the database are made members of the
appropriate access control group.

If the caller provides an ASDBCALLBACK then when either initialization completes or t askwd detects a failure the users
callback routineis called via one of the standard callback tasks.

asl ni t Asyn will return a value of -1 if access initialization is already active. It returns O if asl nit Task is
successfully spawned.

8.6.4.2 Routines used by Channel Access Server
i nt asDbGet Asl (void *paddr)

Get Access Security level for the field referenced by a database access structure. The argument is defined asavoi d* so
that both old and new database access can be used.

void * asDbGet Menber Pvt (voi d *paddr)

Get ASMEMBERPVT for the field referenced by a database access structure. The argument is defined as a voi d* so that
both old and new database access can be used.

8.6.4.3 Routine to test asAddClient
i nt astac(char *pnane, char *user, char *host)
Thisisaroutineto test asAddd i ent . It simulates the calls that are made by Channel Access.

8.6.4.4 Subroutines attached to a subroutine record

These routines are provided so that a channel access client can force an ioc to load a new access configuration database.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 141

Chapter 8: Access Security
Channel Access Security

| ong asSublnit(struct subRecord *prec,int pass)
| ong asSubProcess(struct subRecord *prec)

These are routines that can be attached to a subroutine record. Whenever a 1 is written to the record, asSubPr ocess
cals asl ni t. If asl nit returns success, it returns with asynchronously. When asl ni t Task calls the completion
routine supplied by asSubPr ocess, the return statusis used to place the record in alarm.

8.6.4.5 Diagnostic Routines

These routines provide interfaces to the asDunp routines described in the previous chapter. They do NOT lock before
calling the associated routine. Thus they may fail if the access security configuration is changing while they are running.
However the danger of the user accidently aborting a command and leaving the access security system locked is
considered arisk that should be avoided.

asdbdunp(voi d)
asdbdunpFP(FI LE *f p)

These routines call as DunpFP with amember callback and with verbose TRUE.

aspuag(char *uagnane)
aspuagFP(FI LE *fp, char *uagnarne)

These routines call asDunpUagFP.

asphag(char *hagnane)
asphagFP(FI LE *fp, char *hagnane)

These routines call asDunpHagFP.

asprul es(char *asgnane)
asprul esFP(FI LE *fp, char *asgnane)

These routines call asDunpRul esFP.

asprmem(char *asgnane,int clients)
aspnmenFP(FI LE *fp, char *asgnane,int clients)

These routines call as DunpMentP.

8.7 Channel Access Security

EPICS Access Security was originally designed to protect Input Output Controllers (I0Cs) from unauthorized access via
the Channel Access (CA) network protocol. It can also be used by any Channel Access Server (CAS) tool. For example
the Channel Access PV Gateway implements its own access security. This section describes the interaction between a CA
server and the Access Security system. It also briefly describes how the current access rights state is communicated to
clients of the EPICS control system viathe CA client interface.

142 EPICS Application Developer’'s Guide 1/5/09

Chapter 8: Access Security
Channel Access Security

8.7.1 CA Server Interfacesto the Access Security System

The CA server callsasAddCl i ent () andasRegi sterd i ent Cal | back() for each of the channels that aclient
connects to the server. The routine asRenoved i ent () is caled whenever the client clears (removes) a channel or
when the client disconnects.

The server maintains storage for the clients host and user names. The initial value of these strings are supplied to the
server when the client connects and can be updated at any time by the client. When these strings change then
asChanged i ent () iscaled for each of the channels maintained by the server for the client.

The server checks for read access when processing gets and for write access when processing puts. If access is denied
then an exception message is sent to the client. The macros asCheckCGet () and asCheckPut () perform the checks.

The server checks for read access when processing requests to register an event callback (monitor) for the client. If there
is read access the server always sends an initial update indicating the current value. If there isn't read access the server
sends one update indicating no read access and disabl es subsequent updates.

The server receives asynchronous natification of access rights change via the calback registered with
asRegi sterd i ent Cal | back() . When achannel’s access rights change the server communicates the current state
to the client library. If read access to a channel is lost and there are events (monitors) registered on the channdl then the
server sends an update to the client for each of them indicating no access and disables future updates for each event. If
read access is reestablished to a channel and there are events (monitors) registered on the channel then the server re-
enables updates and sends an initial update message to the client for each of them.

The server must also call asTrapW it eBefore() andasTrapW it eAfter () beforeand after aput request from a
client is performed.

8.7.2 Client Interfaces

Additional details on the channel access client side callable interfaces to access security can be obtained from the
“Channel Access Reference Manual”.

The client library stores and maintains the current state of the access rights for each channel that it has established. The
client library receives asynchronous updates of the current access rights state from the server. It uses this state to check for
read access when processing gets and for write access when processing puts. If a program issues a channel access request
that isinconsistent with the client library’s current knowledge of the access rights state then access is denied and an error
code is returned to the application. The current access rights state as known by the client library can be tested by an
applications program with the C macrosca_read_access() andca_wite_access().

An application program can also receive asynchronous notification of changes to the access rights state by registering a
function to be called back when the client library updates its storage of the access rights state. The application’s call back
functionisinstalled for this purpose by callingca_r epl ace_access_ri ghts_event ().

If the access rights state changes in the server after a request is queued in the client library but before the request is
processed by the server then it is possible that the request will fail in the server. Under these circumstances then an
exception will be raised in the client.

The server always sends one update to the client when the event (monitor) isinitially registered. If thereisn't read access
then the status in the arguments to the application program’s event call back function indicates no read access and the
value in the arguments to the clients event call back is set to zero. If the read accessright changes after the event isinitially
registered then another update is supplied to the application programs call back function.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 143

Chapter 8: Access Security
Trapping Channel Access Writes

8.8 Trapping Channel Access Writes

Access security provides a facility asTrapWrite that can trap write requests and pass them to any facility that registers a
listener. In order to use this facility three things are necessary:

1. Thefacility, e.g. the channel access server, using access security must maketwo calls: asTr apW i t eBef or e()
and asTrapW it eAfter (). These are defined in asLib.h. The channel access server on the ioc makes these
cals.

2. asTrapWite() gets called by asTrapWiteBefore() and asTrapWiteAfter() and uses the
TRAPWRI TE option specified with the RULES given in the access configuration file to decide if listeners should be
called. asTrapWrite also includesaroutineasTr apW i t eRegi st er Li st ener ().

3. Some facility not included with access security must call asTr apW i t eRegi st er Li st ener () . If nothing
cals asTrapW it eRegi st er Li st ener, asTrapWrite does nothing.

The remainder of this section describes how afacility can useasTr apW i t e. h, which isdefined as:

typedef struct asTrapWiteMessage {
const char *userid;
const char *hostid;
voi d *server Specific;
voi d *userPvt;
} asTrapWiteMessage;

typedef void *asTrapWiteld;
typedef void(*asTrapWitelistener)(asTrapWiteMessage *pnessage,int after);

asTrapWiteld asTrapWiteRegi sterListener(asTrapWiteListener func);
voi d asTrapWiteUnregisterListener(asTrapWiteld id);

After afacility callsasTrapW it eRegi st erLi st ener () itsasTrapW it eLi st ener () will get called before
and after each write with an associated RULE that has the option TRAPWRITE set.

asTrapWiteRegi sterListener() is passed the address of an asTrapWiteMessage. This message
contains the following fields:

* useri d - Userid of whoever originated the request.

» hosti d - Hostid of whoever originated the request.

» server Speci fi ¢ - Themeaning of thisfield is server specific. If the listener uses this field it must know what
type of server is supplying the messages. It is the value the server provides to asTrapWriteBefore.

e user Pvt - Thisfield isfor use by theasTrapW i t eLi st ener. When the listener is called before the write,
user Pvt hasthevalueO. Thelistener can giveit any valueit desiresand user Pvt will have have the same value
when the listener gets called after the write.

asTrapWriteListener delays the associated server thread so it must not do anything that causes it to block.

The I0OC's RSRV server the calls asTrapW i t eBef or e with ser ver Speci fi ¢ set to the dbAddr describing the
database |ocation.

8.9 Access Control: | mplementation Overview

This section provides a few aids for reading the access security code. Include file asLi b.h describes the control blocks
used by the access security library.

144 EPICS Application Developer’'s Guide 1/5/09

Chapter 8: Access Security
Access Control: Implementation Overview

8.9.1 Implementation Overview

The following files form the access security system:

 asLib.h Definitions for the portion of access security that isindependent of 10C databases.
» asDbLib.h Definitionsfor access routines that interface to an 10C database.

» asLib_lex.| Lex and Yacc (actually EPICSf | ex and ant el ope) are used to parse the access configuration file.
Thisisthel ex input file.

e asLib.y Thisistheyacc input file. Notethat it includes asLi bRout i nes.c, which do most of the work.

» asLibRoutines.c These are the routines that implement access security. This code has no knowledge of the
database or channel access. It is ageneral purpose access security implementation.

» asDbLib.c This containsthe code for interfacing access security to the IOC database.

e asCa.c This code contains the channel access client code that implements the | NP and CALC definitionsin an
access security database.

 ascheck.c The Unix program which performs a syntax check on a configuration file.

8.9.2 Locking

Because it is possible for multiple tasks to simultaneously modify the access security database it is necessary to provide
locking. Rather than try to provide low level locking, the entire access security database is locked during critical
operations. The only things this should hold up are access initialization, CA searches, CA clears, and diagnostic routines.
It should NEVER cause record processing to wait. In addition CA gets and puts should never be delayed. One exception
exists. If the ASG field of arecord is changed then asChangeQG oup is called which locks.

All operations invoked from outside the access security library that cause changes to the internal structures of the access
security database.routines lock.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 145

Chapter 8: Access Security

Structures
8.10 Structures
UAG
node UAGNAME
name node
list LSEr
HAG
node HAGNAME
ASBASE name node
uagList list host
hagList > ASGINP
asglList ASG node
phash node Inp
name capvt
inpList pasg
rulelist inplndex
memberList|
pavalue > ASGRULE ASGUAG
inpBad node node
inpChanged access puag
level
npUsed ASGHAG
result node
cale phag
rpcl
uaglist
hagList
> ASGCLIENT
ASGMEMBER node
node pasgM ember
pasg user
clientList host
asgName userPvt
userPvt pcallback
level
access
146 EPICS Application Developer’'s Guide 1/5/09

Chapter 9: 10OC Test Facilities

9.1 Overview

This chapter describes a number of 1OC test routines that are of interest to both application developers and system
developers. The routines are available viaiocsh or the vxWorks shell. For both shells, the parentheses are optional, but the
arguments must be separated by commas. On vxWorks al character string arguments must be enclosed in “”. For iocsh
the"" are optional. For example:

dbpf (" ai Test", " 2")
dbpf "ai Test","2"

are both valid with both iocsh and with the vxWorks shell.
dbpf ai Test 2
Isvalid for iocsh but not for the vxWorks shell.
iosch also allows output redirection, i.e. the output of any iosch command can be redirected to afile. For example
dbl > dbl .| st
Will put the output of the dbl command infile"dbl . | st ".

The user should also be aware of the field TPRO, which is present in every database record. If it is set TRUE then a
message is printed each time its record is processed and a message is printed for each record processed as a result of it
being processed.

If iocshis being used it provides help for all commands that have been registered. Just type
hel p
or

hel p <command>

9.2 Database List, Get, Put

9.2.1dbl

Database List:
dbl (“<record type>","<field Iist>")
Examples

dbl
dbl ("ai")

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 147

Chapter 9: 10C Test Facilities
Database List, Get, Put

dbl ("*")
dbl ("")

This command prints the names of records in the run time database. If <record type>isempty(""),"*", or not
specified, all recordsarelisted. If <r ecor d t ype> isspecified, then only the names of the records of that type are listed.

If <field |ist> isgivenand not empty then the values of the fields specified are also printed.

9.2.2dbgrep

List Record Names That Match a Pattern:
dbgrep(“<pattern>")
Examples

dbgrep(“S0*")
dbgrep(“*gpi bA *")

Listsall record names that match a pattern. The pattern can contain any charactersthat arelegal in record names aswell as
“*" which matches O or more characters.

9.2.3dba
Database Address:

dba(“<record_nane. fiel d_nane>")
Example

dba(“aitest”)
dba(“aitest.VAL")

This command calls dbNarmeToAddr and then prints the value of each field in the dbAddr structure describing the field.
If the field name is not specified then VAL is assumed (the two examples above are equivalent).

9.2.4 dbgf
Get Field:

dbgf (“<record_nane. fi el d_name>")
Example:

dbgf (“aitest”)
dbgf)“aitest.VAL")

This performs a dbNameToAddr and then a dbGet Fi el d. It prints the field type and value. If the field name is not
specified then VAL is assumed (the two examples above are equivalent). Note that dbGet Fi el d locksthe record lockset,
so dbgf will not work on arecord with a stuck lockset; use dbpr instead in this case.

9.2.5 dbpf
Put Field:

dbpf (“<record_nane. fiel d_nanme>", "<val ue>")

148 EPICS Application Developer’'s Guide 1/5/09

Chapter 9: 10C Test Facilities
Breakpoints

Example:
dbpf (“aitest”,”5.0")

This command performs a dbNameToAddr followed by adbPut Fi el d and dbgf . If <fi el d_name> is not specified
VAL is assumed.

9.2.6 dbpr
Print Record:

dbpr (“<record_nanme>", <i nterest |evel >)
Example
dbpr(“aitest”, 2)

This command prints al fields of the specified record up to and including those with the indicated interest level. Interest
level has one of the following values:

» 0: Fieldsof interest to an Application developer and that can be changed as a result of record processing.
» 1. Fieldsof interest to an Application developer and that do not change during record processing.

* 2: Fields of major interest to a System devel oper.

« 3: Fields of minor interest to a System devel oper.

* 4: Fields of no interest.

9.2.7 dbtr
Test Record:

dbtr (“<record_nane>")

ThiscalsdbNaneToAddr, then dbPr ocess and finally dbpr (interest level 3). Its purpose isto test record processing.

9.2.8 dbnr

Print number of records:
dbnr (<al | _recordtypes>)

This command displays the number of records of each type and the total number of records. If al | _record_t ypes is
0 then only record types with record instances are displayed otherwise al record types are displayed.

9.3 Breakpoints

A breakpoint facility that allows the user to step through database processing on a per lockset basis. This facility has been
constructed in such away that the execution of al locksets other than ones with breakpoints will not be interrupted. This
was done by executing the records in the context of a separate task.

The breakpoint facility records al attempts to process records in a lockset containing breakpoints. A record that is
processed through external means, e.g.: a scan task, is caled an entrypoint into that lockset. The dbst at command
described below will list all detected entrypointsto alockset, and at what rate they have been detected.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 149

Chapter 9: 10C Test Facilities
Breakpoints

9.3.1dbb
Set Breakpoint:

dbb(“ <record_nanme>")

Sets a breakpoint in a record. Automatically spawns the bkpt Cont , or breakpoint continuation task (one per lockset).
Further record execution in thislockset is run within thistask’s context. Thistask will automatically quit if two conditions
are met, all breakpoints have been removed from records within the lockset, and all breakpoints within the lockset have
been continued.

9.3.2dbd

Remove Breakpoint:
dbd(” <record_nane>")

Removes a breakpoint from a record.

9.3.3dbs
Single Step:
dbs(“ <record_nanme>")

Steps through execution of records within alockset. If this command is called without an argument, it will automatically
step starting with the last detected breakpoint.

9.3.4 dbc

Continue;
dbc(“<record_nanme>")

Continues execution until another breakpoint is found. This command may also be called without an argument.

9.3.5 dbp
Print Fields Of Suspended Record:

dbp("<record_nane>, <i nterest _|evel >)

Prints out the fields of the last record whose execution was suspended.

9.3.6 dbap

Auto Print:
dbap(“<record_nane>")

Toggles the automatic record printing feature. If this feature is enabled for a given record, it will automatically be printed
after the record is processed.

150 EPICS Application Developer’'s Guide 1/5/09

Chapter 9: 10C Test Facilities
Error Logging

9.3.7 dbstat

Status:
dbst at

Prints out the status of all locksets that are suspended or contain breakpoints. This lists al the records with breakpoints
set, what records have the autoprint feature set (by dbap), and what entrypoints have been detected. It aso displays the
vxWorks task ID of the breakpoint continuation task for the lockset. Here is an example output from this call:

LSet: 00009 Stopped at: so#B: 00001 T: Ox23cafac
Entrypoi nt: so#C. 00001 c s 0.1
Br eakpoi nt: so(ap)

LSet: 00008#B: 00001 T: O0x22fee4dc
Br eakpoi nt: out put

The above indicates that two locksets contain breakpoints. One lockset is stopped at record “so.” The other is not
currently stopped, but contains a breakpoint at record “out put . “LSet :” isthe lockset number that is being considered.
“#B: " is the number of breakpoints set in records within that lockset. “T: " is the vxWorks task ID of the continuation
task. “C. " isthe total number of calls to the entrypoint that have been detected. “C/ S: " is the number of those calls that
have been detected per second. (ap) indicates that the autoprint feature has been turned on for record “so.”

9.4 Error Logging

9.4.1 dltc

Display error log messages on console:
eltc(int noYes)

This determines if error messages are displayed on the |OC console. 0 means no and any other value means yes.

9.5 Hardware Reports

9.5.1 dbior
1/0 Report:

dbi or ("<driver_nane>",<interest |evel>)

This command calls the report entry of the indicated driver. If <dr i ver _name>is"" or "*", then areport for all drivers
is generated. The command also calls the report entry of all device support modules. Interest level is one of the following:
* O: Print a short report for each module.
» 1. Print additional information.
» 2. Print even moreinfo. The user may be prompted for options.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 151

Chapter 9: 10C Test Facilities
Scan Reports

9.5.2 dbhcer

Hardware Configuration Report:
dbhcr ()

This command produces areport of al hardware links. To useit on the |OC, issue the command:
dbhcr > report

The report will probably not be in the sort order desired. The Unix command:
sort report > report.sort

should produce the sort order you desire.

9.6 Scan Reports

9.6.1 scanppl

Print Periodic Lists:
scanppl (doubl e rate)

Thisroutine printsalist of al recordsin the periodic scan list of the specified rate. If rate is 0.0 al period lists are shown.

9.6.2 scanpel
Print Event Lists:
scanpel (i nt event nunber)

This routine prints alist of all records in the event scan list for the specified event nunber. If event_number is 0 all event
scan lists are shown.

9.6.3 scanpiol

Print 1/0 Event Lists:
scanpi ol

Thisroutine printsalist of al recordsin the 1/O event scan lists.

9.7 General Time

The built-in time providers depend on the |OC’s target architecture, so some of the specific subsystem report commands
listed below are only available on the architectures that use that particular provider.

152 EPICS Application Developer’'s Guide 1/5/09

Chapter 9: 10C Test Facilities
General Time

9.7.1 generalTimeReport

Format:
general Ti neReport (i nt |evel)

This routine displays the time providers and their priority levels that have registered with the General Time subsystem for
both current and event times. At level 1 it also shows the current time as obtained from each provider.

9.7.2 installL astResortEventProvider

Format:
i nstal | Last Resort Event Provi der

Installs the optional Last Resort event provider at priority 999, which returns the current time for every event number.

9.7.3NTPTime_Report

Format:
NTPTi ne_Report (int |evel)

Only vxWorks and RTEMSS targets use this time provider. The report displays the provider’s synchronization state, and at
interest level 1 it also gives the synchronization interval, when it last synchronized, the nominal and measured system tick
rates, and on vxWorks the NTP server address.

9.7.4 NTPTime_Shutdown

Format:
NTPTi ne_Shut down

On vxWorks and RTEM S this command shuts down the NTP time synchroni zation thread. With the thread shut down, the
driver will no longer act as a current time provider.

9.7.5 ClockTime_Report

Format:
Cl ockTi me_Report (int |evel)

This time provider is used on several target architectures, registered as the time provider of last resort. On vxWorks and
RTEMS the report displays the synchronization state, when it last synchronized the system time with a higher priority
provider, and the synchronization interval. On workstation operating systems the synchronization task is not started on the
assumption that some other process istaking care of synchronzing the OS clock as appropriate, so the report is minimal.

9.7.6 ClockTime_Shutdown

Format:
Cl ockTi nme_Shut down

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 153

Chapter 9: 10C Test Facilities
Access Security Commands

Some sites may prefer to provide their own implementation of a system clock time provider to replace the built-in one. On
vxWorks and RTEMS this command stops the OS Clock synchronization thread, allowing the OS clock to free-run. The
time provider will continue to return the current system time after this command is used however.

9.8 Access Security Commands

9.8.1 asSetSubstitutions

Format:
asSet Substitutions("substitutions")

Specifies macro substitutions used when access security isinitialized.

9.8.2 asSetFilename

Format:
asSet Fi | ename(“<fil enane>")

This command defines a new access security file.

9.8.3 aslnit

Format:
aslnit

This command reinitializes the access security system. It rereads the access security filein order to create the new access
security database. This command is useful either because the asSet Fi | enanme command was used to change the file or
because the file itself was modified. Note that it is also possible to reinitialize the access security via a subroutine record.
See the access security document for details.

9.8.4 asdbdump

Format:
asdbdunp

This provides a complete dump of the access security database.

9.8.5 aspuag
Format:
aspuag(“<user access group>")

Print the members of the user access group. If no user access group is specified then the members of all user access
groups are displayed.

154 EPICS Application Developer’'s Guide 1/5/09

Chapter 9: 10C Test Facilities
Channel Access Reports

9.8.6 asphag

Format:

asphag(“<host access group>")

Print the members of the host access group. If no host access group is specified then the members of all host access
groups are displayed.

9.8.7 asprules

Format:

asprul es(“<access security group>")

Print the rules for the specified access security group or if no group is specified for all groups.

9.8.8 aspmem

Format:

aspnen(“<access security group>", <print clients>)

Print the members (records) that belong to the specified access security group, for all groups if no group is specified. If
<print clients>is(0,1)then Channel Access clients attached to each member (are not, are) shown.

9.9 Channel Access Reports

9.9.1 casr
Channel Access Server Report

casr (<l evel >)

Level can have one of the following values:

0

Prints server’s protocol version level and a one line summary for each client attached. The summary lines
contain the client’s login name, client’s host name, client’s protocol version number, and the number of
channel created within the server by the client.

Level one provides al information in level 0 and adds the task id used by the server for each client, the
client’s IP protocol type, the file number used by the server for the client, the number of seconds elapsed
since the last request was received from the client, the number of seconds elapsed since the last response was
sent to the client, the number of unprocessed request bytes from the client, the number of response bytes
which have not been flushed to the client, the client’s IP address, the client’s port number, and the client’s
State.

Level two provides al information in levels 0 and 1 and adds the number of bytes allocated by each client
and alist of channel names used by each client. Level 2 also provides information about the number of bytes
in the server’s free memory pool, the distribution of entriesin the server’s resource hash table, and the list of
I P addresses to which the server is sending beacons. The channel names are shown in the form:

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 155

Chapter 9: 10C Test Facilities
Interrupt Vectors

<name>(nrw)

where

nis number of ca_add_events the client has on this channel

ris(-,R) if client (does not, does) have read access to the channel.
w is(-, W) if client (does not, does) have write access to the channel.

9.9.2 dbel

Format:
dbel (“<record_nane>")

This routine prints the Channel Access event list for the specified record.

9.9.3 dbcar
Database to Channel Access Report - See “ Record Link Reports’

9.9.4 ascar

Format:
ascar (|l evel)

Prints a report of the channel access links for the INP fields of the access security rules. Level O produces a summary
report. Level 1 produces asummary report plus details on any unconnect channels. Level 2 produces the summary nreport
plus adetail report on each channel.

9.10 Interrupt Vectors

9.10.1 veclist
Format:
vecl i st

NOTE: Thisroutine is only available on vxWorks. On PowerPC CPUs it requires BSP support to work, and even then it
cannot display chained interrupts using the same vector.

Print Interrupt Vector List

156 EPICS Application Developer’'s Guide 1/5/09

Chapter 9: 10C Test Facilities
Miscellaneous

9.11 Miscellaneous

9.11.1 epicsParamShow

Format:

epi csPar anShow
or
epi csPrt EnvPar ans

Print the environment variables that are created with epicsEnvSet. These are defined in <base>/config/ CONFIG_ENV and
<base>/config/ CONFIG_SITE_ENV or else by user applications calling epi csEnvSet .

9.11.2 epicsEnvShow

Format:
epi csEnvShow(" <nane>")

Show Environment variables. On vxWorks it shows the variables created via callsto put env.

9.11.3 coreRelease

Format:
cor eRel ease

Print release information for iocCore.

9.12 Database System Test Routines

These routines are normally only of interest to EPICS system devel opers NOT to Application Developers.

9.12.1 dbtgf
Test Get Field:

dbt gf (“<record_nane. fi el d_nanme>")
Example:

dbtgf (“aitest”)
dbt gf)“aitest. VAL")

This performs a dbNaneToAddr and then calls dbGet Fi el d with all possible request types and options. It prints the
results of each call. This routine is of most interest to system devel opers for testing database access.

9.12.2 dbtpf
Test Put Field:

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 157

Chapter 9: 10C Test Facilities
Record Link Reports

dbt pf (“<record_nane. fi el d_nane>", " <val ue>")
Example:
dbt pf (“aitest”,”5.0")

This command performs adbNanmeToAddr , then callsdbPut Fi el d, followed by dbgf for each possible request type.
Thisroutineis of interest to system developers for testing database access.

9.12.3 dbtpn
Test Put Notify:

dbt pn(“<record_nane. fi el d_nane>", " <val ue>")
Example:
dbt pn(“aitest”,”5.0")

This command performs a dbNarmeToAddr, then calls dbPut Not i f y and has a callback routine that prints a message
whenitiscaled. Thisroutineis of interest to system developers for testing database access.

9.13 Record Link Reports

9.13.1dblsr
Lock Set Report:

dbl sr(<recordnane>, <l evel >)

This command generates a report showing the lock set to which each record belongs. If r ecor dnane is0, ", or "*" all
records are shown, otherwise only records in the same lock set asr ecor dnane are shown.

| evel can have thefollowing values:

0 - Show lock set information only.
1 - Show each record in the lock set.
2 - Show each record and all database links in the lock set.

9.13.2 dbcar

Database to channel access report
dbcar (<recor dnane>, <l evel >)

This command generates a report showing database channel access links. If r ecor dnane is"*" then information about
all recordsis shown otherwise only information about the specified record.

| evel can have the following values:

0 - Show summary information only.
1 - Show summary and each CA link that is not connected.
2 - Show summary and status of each CA link.

158 EPICS Application Developer’'s Guide 1/5/09

Chapter 9: 10C Test Facilities
Old Database Access Testing

9.13.3 dbhcr
Report hardware links. See “Hardware Reports’.

9.14 Old Database Access Testing

These routines are of interest to EPICS system developers. They are used to test the old database access interface, which
isstill used by Channel Access.

9.14.1 gft
Get Field Test:

gf t (“<record_nane. fi el d_nane>")
Example:

gft(“aitest”)
gft(“aitest.VAL")

Thisperformsadb_nane_t o_addr andthencalsdb_get fi el d with all possible request types. It prints the results
of each call. Thisroutineis of interest to system developers for testing database access.

9.14.2 pft
Put Field Test:

pft(“<record_nane.field_nanme>", " <val ue>")
Example:
pft(“aitest”,”5.0")

This command performs a db_nane_t o_addr, db_put _field, db_get field and prints the result for each
possible request type. Thisroutineis of interest to system developers for testing database access.

9.14.3tpn
Test Put Notify:

tpn(“<record_nane. fiel d_name>", " <val ue>")
Example:

tpn(“aitest”,”5.0")
Thisroutine tests dbPut Not i f y viathe old database access interface.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 159

Chapter 9: 10C Test Facilities
Routines to dump database information

9.15 Routines to dump database information

9.15.1 dbDumpPath

Dump Path:
dbDunpPat h(pdbbase)

dbDunpPat h(pdbbase)
The current path for database includes is displayed.

9.15.2 dbDumpMenu

Dump Menu:

dbDunpMenu(pdbbase, " <nmenu>")

dbDunpMenu(pdbbase, " nenuScan”)

If the second argument is O then all menus are displayed.

9.15.3 dbDumpRecordType

Dump Record Description:

dbDunpRecor dType(pdbbase, "<record type>")

dbDunpRecor dType(pdbbase, "ai ")

If the second argument is O then all descriptions of all records are displayed.

9.15.4 dbDumpField

Dump Field Description:
dbDunpFi el d(pdbbase, "<record type>",”<field nane>")

dbDunpFi el d(pdbbase, "ai ", " VAL")

If the second argument is O then the field descriptions of all records are displayed. If the third argument is O then the
description of all fields are displayed.

9.15.5 dbDumpDevice
Dump Device Support:

160 EPICS Application Developer’'s Guide 1/5/09

Chapter 9: 10C Test Facilities
Routines to dump database information

dbDunpDevi ce(pdbbase, "<record type>")

dbDunpDevi ce(pdbbase, "ai ")
If the second argument is O then the device support for all record typesis displayed.

9.15.6 dbDumpDriver

Dump Driver Support:
dbDunpDri ver (pdbbase)

dbDunpDri ver (pdbbase)

9.15.7 dbDumpRecord

Dump Record Instances:

dbDunmpRecor d(pdbbase, "<record type>", | evel)

dbDunpRecor ds(pdbbase, "ai ")

If the second argument is O then the record instances for all record types is displayed. The third argument determines
which fields are displayed just like for the command dbpr .

9.15.8 dbDumpBreaktable

Dump breakpoint table
dbDunpBr eakt abl e(pdbbase, nane)

dbDunpBr eakt abl e(pdbbase, "t ypeKdegF”)
This command dumps a breakpoint table. If the second argument is 0 all breakpoint tables are dumped.

9.15.9 dbPvdDump

Dump the Process variable Directory:
dbPvdDunp(pdbbase, ver bose)

dbPvdDunp(pdbbase, 0)

This command shows how many records are mapped to each hash table entry of the process variable directory. If verbose
is not 0 then the command also displays the names which hash to each hash table entry.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 161

Chapter 9: 10C Test Facilities
Routines to dump database information

162 EPICS Application Developer’'s Guide 1/5/09

Chapter 10: 10OC Error Logging

10.1 Overview

Errors detected by an 1OC can be divided into classes. Errors related to a particular client and errors not attributable to a
particular client. An example of the first type of error is an illegal Channel Access request. For this type of error, a status
value should be passed back to the client. An example of the second type of error is a device driver detecting a hardware
error. Thistype of error should be reported to a system wide error handler.

Dividing errorsinto these two classes is complicated by a number of factors.

» Inmany casesit is not possible for the routine detecting an error to decide which type of error occurred.

» Normally, only the routine detecting the error knows how to generate a fully descriptive error message. Thus, if a
routine decides that the error belongs to a particular client and merely returns an error status value, the ability to
generate afully descriptive error message islost.

« If aroutine always generates fully descriptive error messages then a particular client could cause error message
storms.

» While developing a new application the programmer normally prefers fully descriptive error messages. For a
production system, however, the system wide error handler should not normally receive error messages cause by a
particular client.

If used properly, the error handling facilities described in this chapter can process both types of errors.
This chapter describes the following:

» Error Message Generation Routines - Routines which pass messages to the errlog Task.
» Error Log Listeners - Any code can register to recieve errlog messages.
 errlogThread - A thread that passes the messages to all registered listeners.

» console output and message buffer size - Messages can also be written to the console. The storage for the message
gueue can be specified by the user.

» status codes - EPICS status codes.

* iocLog- A system wide error logger supplied with base. It writes all messages to a system widefile.
NOTE: Many sites use CMLOG instead of iocLog.

NOTE: r ecGbl error routines are also provided. They in turn call one of the error message routines.

10.2 Error Message Routines

10.2.1 Basic Routines

int errlogPrintf(const char *pformat, ...);
int errlogVprintf(const char *pformat,va_list pvar);
int errlogMessage(const char *nessage);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 163

Chapter 10: IOC Error Logging
Error Message Routines

voi d errl ogFl ush(void);

errlogPrintf and errlogVprintf arelikeprintf andvprintf provided by the standard C library, except
that the output is sent to the errlog task. Consult any book that describes the standard C library such as "The C
Programming Language ANSI C Edition” by Kernighan and Ritchie. If epicsThreadlsOkToBlock is true, which is true
during ioclnit, errlogV printf does NOT send output to the errlog task.

err |l ogMessage sends message to the errlog task.
err | ogFl ush wakes up the errlog task and then waits until all messages are flushed from the queue.

10.2.2 Log with Severity

t ypedef enum {
errloglnfo,errl ogMnor, errl ogMaj or, errl ogFat al
}errl ogSevEnum

int errlogSevPrintf(const errlogSevEnum severity,
const char *pformat, ...);
int errlogSevVprintf(const errlogSevEnum severity,
const char *pformat,va_list pvar);

char *errl ogGet SevEnunst ri ng(const errl ogSevEnum severity);
void errlogSet SevToLog(const errl ogSevEnum severity);

errl ogSevEnum err| ogGet SevToLog(voi d);

errlogSevPrintf anderrl ogSevVprintf arelikeerrl ogPrintf and errl ogVprintf except that they
add the severity to the beginning of the message in the form "sevr=<value>" where value is on of "info, minor, mgor,
fatal". Also the messageis suppressed if severity isless than the current severity to suppress. If epicsThreadl SOk ToBlock
istrue, which istrue during ioclnit, errlogSevV printf does NOT send output to the errlog task.

errl ogGet SevEnunst ri ng gets the string value of severity.
errl ogSet SevTolLog setsthe severity tolog. er r | ogGet SevTolLog gets the current severity to log.

10.2.3 Status Routines

voi d errMessage(l ong status, char *nessage);
void errPrintf(long status, const char *pFileNang,
int lineno, const char *pformat, ...);
Routine er r Message (actually amacro that callser r Pri nt f) hasthe following format:
voi d errMessage(long status, char *nessage);
Where status is defined as:

» 0: Find latest vxWorks or Unix error.
» -1: Don't report status.
» Other: See“Return Status Values’ above.
err Message, viaacal toerr Pri nt f, printsthe message, the status symbol and string values, and the name of the task

which invoked er r Message. It aso prints the name of the source file and the line number from which the call was
issued.

164 EPICS Application Developer’'s Guide 1/5/09

Chapter 10: IOC Error Logging
errlog Listeners

The calling routine is expected to pass a descriptive message to this routine. Many subsystems provide routines built on
top of er r Message which generate descriptive messages.

An 10C global variable err Ver bose, defined as an ext ernal in errMlef. h, specifies verbose messages. If
err Ver bose is TRUE then er r Message should be called whenever an error is detected even if it is known that the
error belongs to a specific client. If er r Ver bose is FALSE then er r Message should be called only for errors that are
not caused by a specific client.

Routineerr Pri nt f isnormally called asfollows:
errPrintf(status, _ FILE , __LINE ,"<fm>",...);
Where statusis defined as:

e 0: Find latest vxWorks or Unix error.
» -1: Don't report status.
o Other: See“Return Status Vaues’, above.

FILE and LINE are defined as:

e FILE _ Asshownor NULL if the file name and line number should not be printed.
e LINE__ Asshown

The remaining arguments are just like the arguments to the C pri nt f routine. er r Ver bose determines if the filename
and line number are shown.

An EPICS status code can aso be converted to a string. If the supplied status code isn't registered in the status code
database then the raw status code number is converted into a string in the destination buffer.

#i ncl ude "errMef. h"
voi d errSymiookup(l ong status, char *pBuf, unsigned bufLength);

10.2.4 Obsolete Routines

int epicsPrintf(const char *pformat, ...);
int epicsVprintf(const char *pformat,va_list pvar);

These are macros that call errlogPrintf and errlogV printf. They are provided for compatibility.

10.3 errlog Listeners

Any code can receive errlog message. The following are the calls to add and remove alistener.

typedef void(*errlogListener) (void *pvt,const char *nessage);
void errl ogAddLi stener(errlogLi stener |listener,void *pPrivate);
voi d errl ogRenoveli stener(errlogLi stener |istener);

These routines add/remove a callback that receives each error message. These routines are the interface to the actual
system wide error handlers.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 165

Chapter 10: IOC Error Logging
errlogThread

10.4 errlogThread

The error message routines can be called by any non-interrupt level code. These routines pass the message to the errlog
Thread. If any of the error message routines are called at interrupt level, epi csl nt err upt Cont ext Message is
called with the message "errlogPrintf called from interrupt level".

errlogThread manages the messages. Messages are placed in a message queue, which is read by errlogThread. The
message queue uses a fixed block of memory to hold all messages. When the message queue is full additional messages
are rejected but a count of missed messages is kept. The next time the message queue empties an extra message about the
missed messages is generated.

The maximum message size is by default 256 characters. If amessage is longer, the message is truncated and a message
explaining that it was truncated is appended. There is a chance that long messages corrupt memory. This only happens if
client code is defective. Long messages most likely result from "%s" formats with abad string argument.

errlogThread passes each message to any registered listener.

10.5 console output and message queue size

The errlog system can also display messages on theioc console. It callsepi csThr eadl sCkToBl ock to decide when
to display the message. If it is OK to block, the message is displayed by the same thread that calls one of the errlog print
routines. If it isnot OK to block, errlorThread displays the messages.

Normally the errlog system displays al messages on the console. el t ¢ can be used to suppress these messages.

int eltc(int yesno); /* error log to console (0 or 1) */
int errloglnit(int bufsize);
int errloglnit2(int bufsize, int nmaxMsgSi ze);

eltc determinesif errlog task writes message to the console. During error messages storms this command can be used to
suppress console messages. A argument of O suppresses the messages and any other value lets the message go to the
console.

errloglnit or errloglnit2 can be used to initialize the error logging system with alarger buffer and maximum message size.
The default buffer sizeis 1280 bytes, and the default maximum message size is 256.

10.6 Status Codes

EPICS defined status values provide the following features:

» Whenever possible, 10C routines return a status value: (0, non-0) means (OK, ERRCR).

» Theinclude files for each |OC subsystem contain macros defining error status symbols and strings.
* Routines are provided for run time access of the error status symbols and strings.

» A global variable er r Ver bose helps code decide if error messages should be generated.

WARNING: During the fall of 1995 a series of tech-talk messages were generated concerning EPICS status values. No
consensus was reached.

Whenever it makes sense, |OC routines return a status value encoded similar to the vxWorks error status encoding. The
most significant short word indicates the subsystem module within which the error occurred. The low order short word is
a subsystem status value. In order that status values do not conflict with the vxWorks error status values all subsystem
numbers are greater than 500.

166 EPICS Application Developer’'s Guide 1/5/09

Chapter 10: IOC Error Logging
iocLog

Afileepi cs/ shar e/ epi csH er r Mief . h defines each subsystem number. For examplethedef i ne for the database
access routinesis:

#define M dbAccess (501 << 16) \
| *Dat abase Access Routi nes*/

Directory "epi cs/ shar e/ epi csH’ containsani ncl ude library for every IOC subsystem that returns standard status
values. The status values are encoded with lines of the following format:

#define S xxxxxxx value /*string val ue*/
For example:

#define S_dbAccessBadDBR (M _dbAccess| 3) \
/*Invalid Database Request*/

For example, when dbGet Fi el d detects a bad database request type, it executes the statement:
return(S_dbAccessBadDBR) ;
The calling routine checks the return status as follows:

status = dbCGetField(...);
if(status) {/* Call was not successful */ }

10.7 iocLog

NOTE: Many sites use CMLOG instead of iocLog. See the CMLOG documentation for details.

This consists of two modules: iocLogServer and iocLogClient. The client code runs on each ioc and listens for the
messages generated locally by the errlog system. It also reports the messages from the vxWorks logM sg facility.

10.7.1 iocL ogSer ver

Thisruns on ahost. It receives messages for all enabled iocLogClientsin thelocal area network. The messages are written
to afile. Epics base provides a startup file "base/src/util/rc2.logServer”, which is a SystemV init script to start the server.
Consult this script for details.

To start alog server on aUNIX or PC workstation you must first set the following environment variables and then run the
executable "iocL ogServer" on your PC or UNIX workstation.

EPICS |IOC_LOG_FILE_NAME
The name and path to the log file.

EPICS |IOC_LOG_FILE_LIMIT
The maximum size in characters for the log file (after which it becomes a circular file and writes new
messages over old messages at the beginning of thefile). If the valueis zero then thereis no limit on the size
of thelog file.

EPICS |IOC_LOG_FILE_COMMAND
A shell command string used to aobtain the log file path name during initialization and in response to
SIGHUP. The new path name will replace any path name supplied in EPICS IOC_LOG_FILE_NAME.
Thus, if EPICS_IOC_LOG_FILE_NAME is
"alb/c.log" and EPICS |IOC _LOG_FILE_ COMMAND returns"A/B" or "A/B/" thelog server will be stored
a "A/B/c.log"

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 167

Chapter 10: IOC Error Logging
iocLog

If EPICS I0C_LOG_FILE_COMMAND is empty then this behavior is disabled. This feature is used at
some sites for switching the server to anew directory at afixed time each day. Thisvariableis currently used
only by the UNIX version of the log server.

EPICS_|OC_LOG_PORT
THE TCP/IP port used by the log server.

To configure an 1OC so that its messages are placed in the log you must set the environment variable
EPICS 10C_LOG_INET to the IP address of the host that is running the log server, and EPICS 10C_LOG_PORT to the
TCP/IP port used by the log server.

Defaults for all of the above parameters are specified in the files $(EPICS_BASE)/config/ CONFIG_SITE_ENV and
$(EPICS_BASE)/config/ CONFIG_ENV.

10.7.2 iocL ogClient

Thisrunson eachioc. It is started by caling:
iocLoglnit();

The global variablei ocLogDi sabl e can be used to enable/disable the messages from being sent to the server. Setting
this variable to (0,1) (enables,disables) the messages generation. If i ocLogDi sabl e is set to 1 before calling
i ocLogl nit then i ocLogCl i ent will not even initidize itself. i ocLogDi sabl e can aso be changed to turn
logging on or off.

i ocLogd i ent calserr| ogAddLi st ener and sends each messagetothei ocLogSer ver.

10.7.3 Configuring a Private L og Server

In atesting environment it is desirable to use a private log server. This can be done as follows:

» Add aepicsEnvSet command to your |OC startup file. For example
Id < iocCore
epi csEnvSet ("EPI CS_| OC_LOG | NET=XXX. XXX. XXX. XXX")
Theinet addressisthat of your host workstation.

» On your host workstation, start the log server.

168 EPICS Application Developer’'s Guide 1/5/09

Chapter 11: Record Support

11.1 Overview

The purpose of this chapter is to describe record support in sufficient detail such that a C programmer can write new
record support modules. Before attempting to write new support modules, you should carefully study afew of the existing
support modules. If an existing support module is similar to the desired module most of the work will already be done.

From previous chapters, it should be clear that many things happen as a result of record processing. The details of what
happens are dependent on the record type. In order to allow new record types and new device types without impacting the
core |OC system, the concept of record support and device support has been created. For each record type, a record
support module exists. It is responsible for all record specific details. In order to allow a record support module to be
independent of device specific details, the concept of device support has been created.

A record support module consists of a standard set of routines which are called by database access routines. These
routines implement record specific code. Each record type can define a standard set of device support routines specific to
that record type.

By far the most important record support routine is pr ocess, which dbPr ocess calls when it wants to process a
record. Thisroutine is responsible for the details of record processing. In many casesit calls a device support /O routine.
The next section gives an overview of what must be done in order to process a record. Next is a description of the entry
tables that must be provided by record and device support modules. The remaining sections give example record and
device support modules and describe some global routines useful to record support modules.

The record and device support modules are the only modules that are allowed to include the record specific includefiles as
defined in base/ r ec. Thus they are the only routines that access record specific fields without going through database
access.

11.2 Overview of Record Processing

The most important record support routine is pr ocess. This routine determines what record processing means. Before
the record specific “pr ocess” routine is called, the following has already been done:

 Decision to process a record.

» Check that record is not active, i.e. pact must be FALSE.

* Check that the record is not disabled.

The pr ocess routine, together with its associated device support, is responsible for the following tasks:

» Set record active whileiit is being processed
Perform /O (with aid of device support)
 Check for record specific alarm conditions
* Raise database monitors

* Request processing of forward links

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 169

Chapter 11: Record Support
Record Support and Device Support Entry Tables

A complication of record processing isthat some devices are intrinsically asynchronous. It isNEVER permissible to wait
for aslow device to complete. Asynchronous records perform the following steps:

1. Initiate the I/O operation and set pact TRUE

2. Determine amethod for again calling process when the operation completes

3. Return immediately without completing record processing

4. When processis called after the 1/O operation complete record processing

5. Set pact FALSE and return

The examples given below show how this can be done.

11.3 Record Support and Device Support Entry Tables

Each record type has an associated set of record support routines. These routines are located via the data structures
defined in epi cs/ shar e/ epi csH recSup. h. The concept of record support routines isolatesthe i ocCor e software
from the details of each record type. Thus new records can be defined and supported without affecting the 10C core
software.

Each record type aso has zero or more sets of device support routines. Record types without associated hardware, e.g.
calculation records, normally do not have any associated device support. Record types with associated hardware normally
have a device support module for each device type. The concept of device support isolates IOC core software and even
record support from device specific details.

Corresponding to each record type is a set of record support routines. The set of routinesisthe same for every record type.
These routines are located via a Record Support Entry Table (RSET), which has the following structure

rset { /* record support entry table */

| ong nunber; /* nunber of support routine */
RECSUPFUN report; [* print report */
RECSUPFUN init; [* init support */
RECSUPFUN init_record; [/* init record */

RECSUPFUN process; /* process record */
RECSUPFUN speci al ; /* special processing */

RECSUPFUN get _val ue; /* OBSOLETE: Just |eave NULL */
RECSUPFUN cvt _dbaddr; /* cvt dbAddr */
RECSUPFUN get _array_i nfo;
RECSUPFUN put _array_i nfo;
RECSUPFUN get _units;
RECSUPFUN get _preci sion;
RECSUPFUN get _enum str; /* get string fromenum */
RECSUPFUN get _enum strs; /* get all enumstrings */
RECSUPFUN put _enum str; /* put enumfromstring */
RECSUPFUN get _graphi c_doubl e;
RECSUPFUN get _control _doubl e;
RECSUPFUN get _al ar m doubl e;

i

Each record support module must define its RSET. The external name must be of the form:
<record_t ype>RSET

Any routines not needed for the particular record type should be initialized to the value NULL. Look at the example below
for details.

170 EPICS Application Developer’'s Guide 1/5/09

Chapter 11: Record Support
Example Record Support Module

Device support routines are located via a Device Support Entry Table (DSET), which has the following structure:

struct dset ({
| ong
DEVSUPFUN
DEVSUPFUN
DEVSUPFUN
DEVSUPFUN

/* device support entry table */

nunber ; /* nunber of support routines */
report; [* print report */

init; [* init support */

init_record;/* init record instance*/

get _ioint_info; /* get io interrupt info*/

/* other functions are record dependent*/

b

Each device support module must define its associated DSET. The external name must be the same as the name which
appearsin devSup. asci i .

Any record support module which has associated device support must also include definitions for accessing its associated
device support modules. The field”dset ”, which islocated in dbConmon, contains the address of the DSET. It isgiven a

valuebyioclnit.

11.4 Example Record Support Module

This section contains the skeleton of a record support package. The record type is xxx and the record has the following
fields in addition to the dbConmmon fields: VAL, PREC, EQU, HOPR, LOPR HI HI , LOLO HI GH, LOWHHSV, LLSV, HSV,
LSV, HYST, ADEL, MDEL, LALM ALST, M_ST. These fields will have the same meaning as they have for the ai record.
Consult the Record Reference manual for a description.

11.4.1 Declar ations

/* Create RSET -

Record Support Entry Tabl e*/

#define report NULL
#define initialize NULL
static long init_record();
static |ong process();

#def i ne speci al

NULL

#defi ne get val ue NULL

#def i ne cvt _dbaddr

NULL

#define get _array_info NULL
#define put_array_info NULL
static long get _units();

static |long get precision();
#defi ne get _enum str NULL
#defi ne get _enumstrs NULL
#defi ne put_enum str NULL

static | ong get graphic_doubl e();
static | ong get control doubl e();
static | ong get _al arm doubl e();

rset XxxRSET={

RSETNUMBER,
report,
initialize,

init_record,

EPICS Release 3.14.10

EPICS Application Developer’'s Guide 171

Chapter 11: Record Support
Example Record Support Module

process,
speci al
get val ue,
cvt _dbaddr,
get _array_info,
put _array_info,
get _units,
get _preci si on,
get _enum str,
get _enum strs,
put _enumstr,
get _gr aphi c_doubl e,
get _control _doubl e,
get _al ar m doubl e
1
epi csExport Addr ess(rset, xxxRSET) ;

/* declarations for associ ated DSET */
typedef struct xxxdset { /* anal og input dset */
| ong numnber ;
DEVSUPFUN dev_report;
DEVSUPFUN init;
DEVSUPFUN init_record; /* returns: (1,0)=> (failure, success)*/
DEVSUPFUN get _ioint_info;
DEVSUPFUN read_ xxX;
} xxxdset ;

/* forward declaration for internal routines*/
static void checkAl arans(xxxRecord *pxxx);
static void nmonitor(xxxRecord *pxxx);

The above declarations define the Record Support Entry Table (RSET), a template for the associated Device Support
Entry Table (DSET), and forward declarations to private routines.

The RSET must be declared with an external name of xxxRSET. It defines the record support routines supplied for this
record type. Note that forward declarations are given for all routines supported and aNULL declaration for any routine not
supported.

The template for the DSET is declared for use by this module.

11.4.2init_record

static long init_record(void *precord, int pass)
{

xxxXRecor d*pxxx = (xxxRecord *)precord;

xxxdset *pdset;

| ong st at us;

i f(pass==0) return(0);
i f((pdset = (xxxdset *)(pxxx->dset)) == NULL) {

recCbl Recor dErr or (S_dev_noDSET, pxxx, "xxx: init_record”);
return(S_dev_noDSET);

172 EPICS Application Developer’'s Guide 1/5/09

Chapter 11: Record Support
Example Record Support Module

/* must have read_xxx function defined */
i f((pdset->nunmber < 5) || (pdset->read_xxx == NULL)) {
rec@l Recor dError (S_dev_m ssi ngSup, pxxx,
"XXX: init_record”);
return(S_dev_m ssi ngSup);
}
if(pdset->init_record) {
i f((status=(*pdset->init_record)(pxxx))) return(status);
}

return(0);

}

Thisroutine, which iscalled by i ocl ni t twice for each record of type xxx, checksto seeif it has a proper set of device
support routines and, if present, callsthei ni t _r ecor d entry of the DSET.

During thefirst call toi ni t _r ecor d (pass=0) only initializations relating to this record can be performed. During the
second call (pass=1) initializations that may refer to other records can be performed. Note aso that during the second
pass, other records may refer to fields within this record. A good example of where these rules are important is a
waveform record. The VAL field of a waveform record actually refers to an array. The waveform record support module
must allocate storage for the array. If another record has a database link referring to the waveform VAL field then the
storage must be allocated before the link is resolved. This is accomplished by having the waveform record support
allocate the array during the first pass (pass=0) and having the link reference resolved during the second pass (pass=1).

11.4.3 process

static | ong process(void *precord)

{
xxxXRecor d*pxxx = (xxxRecord *)precord;
xxxdset *pdset = (xxxdset *)pxxx->dset;
| ong st at us;
unsi gned char pact =pxxx->pact;

i f((pdset==NULL) || (pdset->read_xxx==NULL)) {
/* leave pact true so that dbProcess doesnt call again*/
pxxx->pact =TRUE;
recCbl Recor dError (S_dev_mi ssi ngSup, pxxx, " read_xxx");
return(S_dev_m ssi ngSup);

}

/* pact nust not be set true until read_xxx conpl etes*/
st at us=(*pdset - >read_xxx) (pxxx); /* read the new val ue */
/* return if beginning of asynch processing*/

i f(!pact &% pxxx->pact) return(0);

pxxx->pact = TRUE;

recCbl Get Ti neSt anp(pxxx) ;

/* check for alarns */

al ar m(pxxx) ;

/* check event list */

noni t or (pxxx) ;

/* process the forward scan link record */
recCGbl FwdLi nk(pxxx) ;

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 173

Chapter 11: Record Support
Example Record Support Module

pxxx- >pact =FALSE;
return(status);

}

The record processing routines are the heart of the IOC software. The record specific process routine is called by
dbPr ocess whenever it decides that arecord should be processed. Process decides what record processing really means.
The above is agood example of what should be done. In addition to being called by dbPr ocess the process routine may
also be called by asynchronous record completion routines.

The above model supports both synchronous and asynchronous device support routines. For example, if r ead_xxx isan
asynchronous routine, the following sequence of events will occur:

» process iscalled with pact FALSE

» read_xxx iscalled. Since pact isFALSE it starts /O, arranges callback, and sets pact TRUE
* read_xxx returns

* because pact went from FALSE to TRUE process just returns

» Any new cal to dbPr ocess isignored because it finds pact TRUE

» Sometime later the callback occurs and pr ocess iscalled again.

» read_xxx iscalled. Since pact is TRUE it knowsthat it is a completion request.
* read_xxx returns

» process completes record processing

» pact isset FALSE

* process returns

At this point the record has been completely processed. The next time pr ocess is caled everything starts all over from
the beginning.

11.4.4 Miscellaneous Utility Routines
static | ong get units(DBADDR *paddr, char *units)

{
xxxRecord *pxxx=(xxxRecord *)paddr->precord;
strncpy(units, pxxx->egu, si zeof (pxxx->egu));
return(0);

}

static | ong get graphi c_doubl e(DBADDR *paddr,
struct dbr_grDoubl e *pgd)
{

xxxRecord *pxxx=(xxxRecord *)paddr->precord;
i nt fieldl ndex = dbGet Fi el dl ndex(paddr) ;

i f(fieldlndex == xxxRecordVAL) {
pgd- >upper _disp_linmt = pxxx->hopr;
pgd- >l ower disp limt = pxxx->lopr;
} el se rec@l Get G aphi cDoubl e(paddr, pgd) ;
return(0);
}
/* simlar routines would be provided for */
/* get _control doubl e and get _al arm doubl e*/

174 EPICS Application Developer’'s Guide 1/5/09

Chapter 11: Record Support
Example Record Support Module

These are a few examples of various routines supplied by a typical record support package. The functions that must be
performed by the remaining routines are described in the next section.

11.4.5 Alarm Processing

static void checkAl arnms(xxxRecord *pxxx)

{
doubl e val ;
fl oat hyst, | al m hi hi, hi gh, | ow, | ol o;
unsi gned short hhsv, |1 sv, hsv, | sv;

i f(pxxx->udf == TRUE){
recCbl Set Sevr (pxxx, UDF_ALARM VALI D_ALARM) ;
return;

}

hi hi =pxxx->hi hi; | ol o=pxxx->l ol o;

hi gh=pxxx- >hi gh; | ow=pxxx- >l ow,

hhsv=pxxx- >hhsv; |1 sv=pxxx->l1sv;

hsv=pxxx- >hsv; | sv=pxxx->| sv;

val =pxxx->val ; hyst =pxxx->hyst; | al mrpxxx->lal m

/* alarmcondition hihi */
if (hhsv && (val >= hihi
[| ((lalme=hihi) & (val >= hihi-hyst)))) {
i f(recCol Set Sevr (pxxx, H H _ALARM pxxx- >hhsv)
pxxx->lal m = hi hi;

return;
}
/* alarmcondition lolo */
if (Ilsv & (val <=1lolo
[] ((lalme=lolo) && (val <= lolo+hyst)))) {
i f(recCl Set Sevr (pxxx, LOLO_ALARM pxxx- >l [sv))
pxxx->lal m= 1ol o;
return;
}
/* alarm condition high */
if (hsv & (val >= high
[((lal me=high) && (val >= high-hyst)))) {
i f(recCl Set Sevr (pxxx, H GH_ALARM pxxx- >hsv))
pxxx->lal m = hi gh;
return;
}
/* alarmcondition | ow */
if (Isv & (val <= | ow
[] (lalme=low) && (val <= lowthyst)))) {
i f(recCbl Set Sevr (pxxx, LON ALARM pxxx- >l sv))
pxxx->lal m= 1 ow
return;
}

/*we get here only if val is out of alarmby at |east hyst*/
pxxx- >l al meval ;

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 175

Chapter 11: Record Support
Example Record Support Module

return;

}

Thisisatypical set of code for checking alarms conditions for an analog type record. The actual set of code can be very
record specific. Note also that other parts of the system can raise alarms. The algorithm is to always maximize alarm
severity, i.e. the highest severity outstanding alarm will be reported.

The above algorithm also honors a hysteresis factor for the alarm. Thisis to prevent alarm storms from occurring in the
event that the current value is very near an alarm limit and noise makes it continually cross the limit. It honors the
hysteresis only when the value is going to alower alarm severity.

Note the test:

i f(pxxx->udf == TRUE){
rec@l Set Sevr (pxxx, UDF_ALARM VALI D_ALARM) ;
return;

}

Database common defines the field UDF, which means that field VAL is undefined. The STAT and SEVR fields are
initialized as though r ecGol Set Sevr (pxxx, UDF_ALARM VALI D_ALARM was called. Thusif the record is never
processed the record will beinan INVALID UNDEFINED alarm state. Field UDF isinitialized to thevalue 1, i.e. TRUE.
Thus the above code will keep the record in the INVALID UNDEFINED aarm state as long as UDF is not given the
valueO.

The UDF field means Undefined, i.e. the VAL field has never been given avalue. When records are |oaded into an ioc this
istheinitial state of records. Whevever code gives avalue to the VAL field it is also supposed to set UDF false. Unless a
particular record type has unusual semantics no code should set UDF true. UDF normally means that the field was never
given avaue.

For input records device support is responsible for obtaining an input value. If no input value can be obtained neither
record support nor device support sets UDF false. If device support reads a raw value it returns a value telling record
support to perform a conversion. After the record support sets VAL equal to the converted value, it sets UDF false. If
device support obtains a converted value that it writesto VAL, it sets UDF false.

For output records either something outside record/device support writes to the VAL field or else VAL is given a value
because record support obtains a value via the OMSL field. In either case the code that writes to the VAL field sets UDF
false.

Whenever database access writes to the VAL field it sets UDF false.

Routine recGbl SetSevr is called to raise alarms. It can be called by iocCore, record support, or device support. The code
that detects an alarm is responsible for raising the alarm.

11.4.6 Raising Monitors

static void nmonitor(xxxRecord *pxxx)
{

unsi gned short noni t or _nmask;

fl oat del ta;

noni t or_mask = recCGbl Reset Al ar ms(pxxx) ;
/* check for val ue change */
delta = pxxx->nm st - pxxx->val;
if(delta<0.0) delta = -delta;
if (delta > pxxx->ndel) {
/* post events for value change */
noni t or _mask | = DBE_VALUE;

176 EPICS Application Developer’'s Guide 1/5/09

Chapter 11: Record Support
Record Support Routines

/* update |ast value nonitored */
pxxx->m st = pxxx->val ;
}
/* check for archive change */
delta = pxxx->al st - pxxx->val;
if(delta<0.0) delta = 0.0;
if (delta > pxxx->adel) {
/* post events on value field for archive change */
nmoni t or_mask | = DBE_LOG
/* update | ast archive value nonitored */
pxxx->al st = pxxx->val ;

* send out nonitors connected to the value field */
i f (ronitor_mask){
db_post _event s(pxxx, &xxx->val , noni t or _mask) ;

return;

}

All record types should call r ecGbl Reset Al ar ns as shown. Note that nst a and nsev will have the value O after this
routine completes. Thisis necessary to ensure that alarm checking starts fresh after processing completes. The code aso
takes care of raising alarm monitors when arecord changes from an alarm state to the no alarm state. It is essential that
record support routines follow the above model or else alarm processing will not follow the rules.

Analog type records should also provide monitor and archive hysteresis fields as shown by this example.
db_post _event s resultsin channel access issuing monitors for clients attached to the record and field. The cal is

i nt db_post_events(void *precord, void *pfield,
unsi gned int nonitor_mask)

where:

pr ecor d - The address of the record

pfi el d - The address of the field

nmoni t or _mask - A bit mask that can be any combinations of the following:
DBE_ALARM - A change of alarm state has occured. Thisis set by r ecGbl Reset Al ar ns.
DBE_LOG - Archive change of state.
DBE_VAL - Vaue change of state

IMPORTANT: The record support module is responsible for calling db_post _event for any fields that change as a
result of record processing. Also it should NOT call db_post _event for fields that do not change.

11.5 Record Support Routines

This section describes the routines defined in the RSET. Any routine that does not apply to a specific record type must be
declared NULL.

11.5.1 Generate Report of Each Field in Record

report (void *precord); /* addr of record*/

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 177

Chapter 11: Record Support
Record Support Routines

Thisroutineis not used by most record types. Any action is record type specific.

11.5.2 Initialize Record Processing
initialize(void);

Thisroutine is called once at 10C initialization time. Any action is record type specific. Most record types do not need
this routine.

11.5.3 Initialize Specific Record

init_record(
void *precord, /* addr of record*/
i nt pass) ;

i ocl nit calls this routine twice (pass=0 and pass=1) for each database record of the type handled by this routine. It
must perform the following functions:

» Check and/or issue initialization calls for the associated device support routines.

* Perform any record type specific initialization.

 During thefirst passit can only perform initializations that affect the record referenced by precord.
* During the second pass it can perform initializations that affect other records.

11.5.4 Process Record

process(void *precord); /* addr of record*/

This routine must follow the guidelines specified previously.

11.5.5 Special Processing

speci al (
struct dbAddr *paddr,
i nt after);/*(FALSE, TRUE) =>(Bef ore, After) Processi ng*/

This routine implements the record type specific special processing for the field referred to by dbAddr . Note that it is
called twice. Once before any changes are made to the associated field and once after. File speci al . h defines specia
types. Thisroutine isonly called for user special fields, i.e. fieldswith SPC_xxx >= 100. A field is declared special in the
ASCII record definition file. New values should not by added to speci al . h, instead use SPC_MCD.

The database access routine, dbCGet Fi el dl ndex can be used to determine which field is being modified.

11.5.6 Get Value

Thisroutineis no longer used. It should be left asa NULL procedure in the record support entry table.

11.5.7 Convert dbAddr Definitions
cvt _dbaddr (struct dbAddr *paddr);

178 EPICS Application Developer’'s Guide 1/5/09

Chapter 11: Record Support
Record Support Routines

Thisroutineis called by dbNaneToAddr if thefield has special set equal to SPC_DBADDR. A typical useiswhen afield
refers to an array. This routine can change any combination of the dbAddr fields: no_el enent s, fi el d_t ype,
field_size,special,pfield, and dbr_type. For exampleif the VAL field of a waveform record is passed to
dbNanmeToAddr, cvt _dbaddr would change dbAddr so that it refers to the actual array rather then VAL.

The database access routine, dbCGet Fi el dl ndex can be used to determine which field is being modified.
NOTES:

* Channel access calls db_name to_addr, which is part of old database access. Db _name to addr calls
dbNameToAddr. Thisis done when aclient connects to the record.

* no_elements must be set to the maximum number of elements that will ever be stored in the array.

11.5.8 Get Array Information

get _array_i nfo(
struct dbAddr *paddr,
| ong *no_el ement s,
| ong *of fset);

This routine returns the current number of elements and the offset of the first value of the specified array. The offset field
is meaningful if the array isactually acircular buffer.

The database access routine, dbGet Fi el dl ndex can be used to determine which field is being modified. It is
permissiblefor get _array_i nf o tochangepfi el d. Thisfeature can be used to implement double buffering.

When an array field isbeing written get _array_i nf o iscalled before the field values are changed.

11.5.9 Put Array Information

put _array_info(
struct dbAddr *paddr,
| ong nNew) ;

Thisroutineis called after new values have been placed in the specified array.
The database access routine, dbCGet Fi el dl ndex can be used to determine which field is being modified.

11.5.10 Get Units

get _units(
struct dbAddr *paddr,
char *punits);

This routine sets units equal to the engineering units for the field.

The database access routine, dbCet Fi el dl ndex can be used to determine which field is being modified.

11.5.11 Get Precision

get _preci sion(
struct dbAddr *paddr,
| ong *preci sion);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 179

Chapter 11: Record Support
Record Support Routines

This routine gets the precision, i.e. number of decimal places, which should be used to convert the field value to an ASCI|
string. r ecGbl Get Pr ec should be called for fields not directly related to the value field.

The database access routine, dbCet Fi el dl ndex can be used to determine which field is being modified.

11.5.12 Get Enumerated String

get _enum str(
struct dbAddr *paddr,
char *p);

Thisroutine sets* p equal to the ASCII string for the field value. The field must have type DBF_ENUM
Look at the code for the bi or nmbbi records for examples.
The database access routine, dbGet Fi el dl ndex can be used to determine which field is being modified.

11.5.13 Get Strings for Enumer ated Field

get _enum strs(
struct dbAddr *paddr,
struct dbr_enunftrs *p);

Thisroutine gives values to al fields of structuredbr _enunstrs.
Look at the code for the bi or nmbbi records for examples.

The database access routine, dbCet Fi el dI ndex can be used to determine which field is being modified.

11.5.14 Put Enumerated String

put _enum str(
struct dbAddr *paddr,
char *p);

Given an ASCII string, this routine updates the database field. It compares the string with the string val ues associated with
each enumerated value and if it finds amatch sets the database field equal to the index of the string which matched.

Look at the code for the bi or nbbi records for examples.
The database access routine, dbGet Fi el dl ndex can be used to determine which field is being modified.

11.5.15 Get Graphic Double Infor mation

get _gr aphi c_doubl e(
struct dbAddr *paddr,
struct dbr_grDouble *p); /* addr of return info*/

This routine fills in the graphics related fields of structure dbr _gr Doubl e. r ecGl Get G- aphi cDoubl e should be
called for fields not directly related to the value field.

The database access routine, dbCGet Fi el dI ndex can be used to determine which field is being modified.

180 EPICS Application Developer’'s Guide 1/5/09

Chapter 11: Record Support
Global Record Support Routines

11.5.16 Get Control Double I nfor mation

get _control _doubl g(
struct dbAddr *paddr,
struct dbr_ctrlDouble *p); /* addr of return info*/

This routine gives values to al fields of structure dbr _ct r| Doubl e. r ecGbl Get Cont r ol Doubl e should be called
for fields not directly related to the value field.

The database access routine, dbCet Fi el dl ndex can be used to determine which field is being modified.

11.5.17 Get Alarm Double I nformation

get _al ar m doubl e(
struct dbAddr *paddr,
struct dbr_al Double *p); /* addr of return info*/

Thisroutine gives valuesto all fields of structure dbr _al Doubl e.

The database access routine, dbCet Fi el dl ndex can be used to determine which field is being modified.

11.6 Global Record Support Routines

A number of global record support routines are available. These routines are intended for use by the record specific
processing routines but can be called by any routine that wishes to use their services.

The name of each of these routines beginswith "r ecGol ”.

11.6.1 Alarm Status and Severity

Alarms may be raised in many different places during the course of record processing. The algorithm is to maximize the
alarm severity, i.e. the highest severity outstanding alarm is raised. If more than one alarm of the same severity is found
then the first one is reported. This means that whenever a code fragment wants to raise an alarm, it does so only if the
alarm severity it will declareis greater then that already existing. Four fields (in database common) are used to implement
alarms: sevr, st at , nsev, and nst a. Thefirst two are the status and severity after the record is completely processed.
The last two fields (nst a and nsev) are the status and severity values to set during record processing. Two routines are
used for handling alarms. Whenever a routine wants to raise an alarm it callsr ec@l Set Sevr. This routine will only
change nst a and nsev if it will result in the alarm severity being increased. At the end of processing, the record support
module must call r ecGbl Reset Al ar ms. Thisroutine sets st at =nst a, sevr =nsev, nst a=0, and nsev=0. If st at

or sevr has changed value since the last call it calls db_post _event for st at and sevr and returns a value of
DBE_ALARM If no change occured it returns 0. Thus after calling r ecCGbl Reset Al ar ns everything is ready for raising
alarms the next time the record is processed. The example record support module presented above shows how these
macros are used.

rec@l Set Sevr (
voi d *precord,
short nst a,
short nsevr);

Returns: (TRUE, FALSE) if (did, did not) change nst a and nsev.

unsi gned short recGbl Reset Alarnms(void *precord);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 181

Chapter 11: Record Support
Global Record Support Routines

Returns: Initial value for noni t or _mask

11.6.2 Alarm Acknowledgment

Database common contains two additional alarm related fields: acks (Highest severity unacknowledged alarm) and
ackt (doestransient alarm need to be acknowledged). These field are handled by i ocCor e andr ecGhl Reset Al ar ns
and are not the responsihility of record support. These fields are intended for use by the alarm handler.

11.6.3 Generate Error: Process Variable Name, Caller, M essage

SUGGESTION: useerr | ogPri nt f instead of thisfor new code.

r ecCbl Dbaddr Er r or (
| ong st at us,
struct dbAddr *paddr,
char *pcal l er_nane); /* calling routine nane */

This routine interfaces with the system wide error handling system to display the following information: Status
information, process variable name, calling routine.

11.6.4 Generate Error: Status String, Record Name, Caller

SUGGESTION: useerr | ogPri nt f instead of thisfor new code.
rec@l Recor dError (
| ong st at us,
voi d *precord, /* addr of record */
char *pcal | er _nan®e); /* calling routine nane */

This routine interfaces with the system wide error handling system to display the following information: Status
information, record name, calling routine.

11.6.5 Generate Error: Record Name, Caller, Record Support M essage

SUGGESTION: useerr | ogPri nt f instead of thisfor new code.
recCbl RecsupEr ror (
| ong st at us,
st ruct dbAddr *paddr ,
char *pcal | er _nane, /* calling routine nane */
char *psupport _nane); /* support routine nane*/

This routine interfaces with the system wide error handling system to display the following information: Status
information, record name, calling routine, record support entry name.

11.6.6 Get Graphics Double

rec@l Get G aphi cDoubl e(
struct dbAddr *paddr,
struct dbr_grDouble *pgd);

Thisroutine can be used by theget _gr aphi c_doubl e record support routine to obtain graphics values for fields that it
doesn’t know how to set.

182 EPICS Application Developer’'s Guide 1/5/09

Chapter 11: Record Support
Global Record Support Routines

11.6.7 Get Control Double

rec@l Get Cont r ol Doubl e(
struct dbAddr *paddr,
struct dbr_ctrl Doubl e *pcd) ;

This routine can be used by theget _cont r ol _doubl e record support routine to obtain control values for fields that it
doesn’t know how to set.

11.6.8 Get Alarm Double

rec@l Get Al ar nDoubl e(
struct dbAddr *paddr,
struct dbr_al Double *pcd);

This routine can be used by the get _al ar m doubl e record support routine to obtain control values for fields that it
doesn’t know how to set.

11.6.9 Get Precision

rec@l Get Prec(
struct dbAddr *paddr,
| ong *pprecision);

This routine can be used by the get _pr eci si on record support routine to obtain the precision for fields that it doesn't
know how to set the precision.

11.6.10 Get Time Stamp
rec@l Get Ti meSt anp(voi d *precord)

This routine gets the current time stamp and putsit in the record It does the following:

e |f TSEL isnot aconstant link and TSEL refersto the TIME field of arecord, the time is obtained from the record
reference by TSEL and this put in field TIME. The routine then returns.

 If TSEL isnot aconstant link dbGetLink is called and the value put in field TSE.
» If TSEisequal toepi csTi neEvent Devi ceTi me (-2) then noting is done, i.e. the routine just returns.
» epi csTi meGet Event iscalled.

11.6.11 Forward link

recGol FwdLi nk(
void *precord);

This routine can be used by process to request processing of forward links.

11.6.12 Initialize Constant Link

i nt recCGblnitConstantLink(
struct link *plink,
short dbf Type,
voi d *pdest) ;

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 183

Chapter 11: Record Support
Global Record Support Routines

Initialize a constant link. This routine is usually called by i ni t _record (or by associated device support) to initiaize
the field associated with a constant link. It returns(FALSE, TRUE) if it (did not, did) modify the destination.

184 EPICS Application Developer’'s Guide 1/5/09

Chapter 12: Device Support

12.1 Overview

In addition to a record support module, each record type can have an arbitrary number of device support modules. The
purpose of device support is to hide hardware specific details from record processing routines. Thus support can be
developed for a new device without changing the record support routines.

A device support routine has knowledge of the record definition. It also knows how to talk to the hardware directly or how
to call a device driver which interfaces to the hardware. Thus device support routines are the interface between hardware
specific fields in a database record and device drivers or the hardware itself.

Release 3.14.8 introduced the concept of extended device support, which provides an optional interface that a device
support can implement to obtain notification when a record’s address is changed at runtime. This permits records to be
reconnected to a different kind of 1/0 device, or just to a different signal on the same device. Extended device support is
described in more detail in Section 12.5 on page 190 below.

Database common contains two device related fields:

 dtyp: Device Type.
* dset: Address of Device Support Entry Table.

Thefield dt yp contains theindex of the menu choice as defined by the device ASCII definitions. i ocl ni t usesthisfield
and the device support structures defined in devSup. h to initialize the field dset . Thus record support can locate its
associated device support viathe dset field.

Device support modules can be divided into two basic classes. synchronous and asynchronous. Synchronous device
support is used for hardware that can be accessed without delays for 1/0. Many register based devices are synchronous
devices. Other devices, for example all GPIB devices, can only be accessed via l/O requests that may take large amounts
of time to complete. Such devices must have associated asynchronous device support. Asynchronous device support
makes it more difficult to create databases that have linked records.

If a device can be accessed with adelay of less then afew microseconds then synchronous device support is appropriate.
If adevice causes delays of greater than 100 microseconds then asynchronous device support is appropriate. If the delay is
between these values your guess about what to do is as good as mine. Perhaps you should ask the hardware designer why
such a device was created.

If adevice takes along time to accept requests there is another option than asynchronous device support. A driver can be
created that periodicaly polls al its attached input devices. The device support just returns the latest polled value. For
outputs, device support just notifies the driver that a new value must be written. the driver, during one of its polling phases,
writes the new value. The EPICS Allen Bradley device/driver support is agood example.

12.2 Example Synchronous Device Support Module

/* Create the dset for devAi Soft */
long init_record();

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 185

Chapter 12: Device Support
Example Synchronous Device Support Module

| ong read_ai ();
struct {
| ong numnber ;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record,;
DEVSUPFUN get _ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN speci al _| i nconv;
}devAi Sof t ={
6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL
1
epi csExport Addr ess(dset, devAi Soft);

static long init_record(void *precord)

{
ai Record *pai = (aiRecord *)precord,;
| ong status;

/* ai.inp must be a CONSTANT, PV_LINK, DB LINK or CA LI NK*/
switch (pai->inp.type) {
case (CONSTANT) :
i f(rec@l I nitConstantLink(&pai->i np, DBF_DOUBLE, &pai - >val))
pai - >udf = FALSE;
br eak;
case (PV_LINK)
case (DB_LI NK)
case (CA _LINK)
br eak;
def aul t
rec®l RecordError (S _db_badField, (void *)pai,
"devAi Soft (init_record) Illegal INP field");
return(S_db_badFi el d);
}
/* Make sure record processing routine does not perform any conversion*/
pai - >l i nr =0;
return(0);

}

static long read_ai (void *precord)

{
ai Record*pai =(ai Record *)precord,;
|l ong status;

st at us=dbGet Get Li nk(& pai - >i np. val ue. db_l i nk),
(void *)pai, DBR_DOUBLE, & pai ->val), 0,1);
i f (pai->inp.type! =CONSTANT && RTN_SUCCESS(st atus)) pai->udf = FALSE;

186 EPICS Application Developer’'s Guide 1/5/09

Chapter 12: Device Support
Example Asynchronous Device Support Module

return(2); /*don’t convert*/

}

The example is devAi Sof t, which supports soft analog inputs. The | NP field can be a constant or a database link or a
channel accesslink. Only two routines are provided (the rest are declared NULL). Thei ni t _r ecor d routinefirst checks
that the link type is valid. If the link is a constant it initializes VAL If the link is a Process Variable link it cals
dbCaCet Li nk toturnitinto aChannel Accesslink. Ther ead_ai routine obtainsan input valueif thelink is a database
or Channel Access link, otherwise it doesn’t have to do anything.

12.3 Example Asynchronous Device Support Module

This example shows how to write an asynchronous device support routine. It does the following sequence of operations:

1. When first called pact isFALSE. It arranges for a callback (myCal | back) routine to be called after a number of
seconds specified by the DI SV field.

2. It prints a message stating that processing has started, setspact TRUE, and returns. The record processing routine
returns without completing processing.

3. When the specified time elapsesny Cal | back iscalled. It callsdbScanLock to lock therecord, calspr ocess,
and calls dbScanUnl ock to unlock the record. It calls the process entry of the record support module, which it
locatesviather set field in dbCommon, directly rather than dbPr ocess. dbPr ocess would not call pr ocess
because pact is TRUE.

4, When pr ocess executes, it again callsr ead_ai . Thistime pact is TRUE.

5. read_ai printsamessage stating that record processing is complete and returns a status of 2. Normally a value of
0 would be returned. The value 2 tells the record support routine not to attempt any conversions. This is a
convention (a bad convention!) used by the analog input record.

6. Whenr ead_ai returnsthe record processing routine completes record processing.
At this point the record has been completely processed. The next time processis called everything starts al over.

Note that this is somewhat of an artificial example since real code of this form would more likely use the
callbackcallbackRequestProcessCallbackDelayed function to perform the required processing.

static void nyCal | back(CALLBACK *pcal | back)
{

struct dbCommon *precord;

struct rset *prset;

cal | backGet User (precord, pcal | back) ;
prset=(struct rset *)(precord->rset);
dbScanLock(precord);
(*prset->process)(precord);
dbScanUnl ock(precord);

}

static long init_record(struct ai Record *pai)
{
CALLBACK *pcal | back;
switch (pai->inp.type) {
case (CONSTANT) :
pcal | back = (CALLBACK *)(cal |l oc(1, sizeof (CALLBACK)));
cal | backSet Cal | back(nyCal | back, pcal | back) ;
cal | backSet User (pai , pcal | back) ;

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 187

Chapter 12: Device Support
Device Support Routines

pai - >dpvt = (void *)pcal | back
br eak;
def aul t
rec®l RecordError (S _db_badFi el d, (void *)pai
"devAi Test Asyn (init_record) Illegal INP field");
return(S_db_badFi el d);

}
return(0);
}
static |long read_ai (struct ai Record *pai)
{
CALLBACK *pcal | back = (CALLBACK *) pai - >dpvt;
i f(pai->pact) {
pai ->val += 0.1; /* Change VAL just to show we’ ve done sonething. */
pai - >udf = FALSE; /* We nodify VAL so we are responsible for UDF too. */
printf("Conpl eted asynchronous processing: %\n", pai - >nane);
return(2); /* don‘t convert*/
}
printf("Starting asynchronous processing: %\n", pai->nane);
pai - >pact =TRUE
cal | backRequest Del ayed(pcal | back, pai - >di sv) ;
return(0);
}
/* Create the dset for devAi Test Asyn */
struct {
| ong numnber ;

DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record,
DEVSUPFUN get _ioint_info;
DEVSUPFUN read_ai
DEVSUPFUN speci al _| i nconv;
} devAi Test Asyn={
6,
NULL,
NULL,
init_record,
NULL,
read_ai
NULL
1
epi csExport Addr ess(dset, devAi Test Asyn) ;

12.4 Device Support Routines

This section describes the routines defined in the DSET. Any routine that does not apply to a specific record type must be
declared NULL.

188 EPICS Application Developer’'s Guide 1/5/09

Chapter 12: Device Support
Device Support Routines

12.4.1 Generate Device Report

| ong report(
i nt i nterest);

This routine is responsible for reporting all 1/O cards it has found. If i nt er est is (0,1) then generate a (short, long)
report. If a device support moduleis using adriver, it normally does not have to implement this routine because the driver
generates the report.

12.4.2 Initialize Device Processing

long init(
i nt after);

This routine is called twice at 10C initialization time. Any action is device specific. This routine is called twice: once
before any database records are initialized and once after all records are initialized but before the scan tasks are started.
af t er hasthevalue (0,1) (before, after) record initialization.

12.4.3 Initialize Specific Record

long init_record(
void *precord); /* addr of record*/

Therecord supporti ni t _record routine callsthisroutine.

12.4.4 Get 1/O Interrupt Information

l ong get _ioint_info(
i nt cnd,
struct dbConmon *precord,
| OSCANPVT *ppvt);

Thisis caled by the I/O interrupt scan task. If cnd is (0,1) then this routine is being called when the associated record is
being (placed in, taken out of) an I/O scan list. See the chapter on scanning for details.

It should be noted that a previous type of 1/0 event scanning is till supported. It is not described in this document
because, hopefully, it will go away in the near future. When it calls this routine the arguments have completely different
meanings.

12.4.5 Other Device Support Routines

All other device support routines are record type specific.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 189

Chapter 12: Device Support
Extended Device Support

12.5 Extended Device Support

This section describes the additional behaviour and routines required for a device support layer to support online changes
to arecord’s hardware address.

12.5.1 Rationale

In releases prior to R3.14.8 it is possible to change the value of the INP or OUT field of arecord but (unless a soft device
support is in use) this generally has no effect on the behaviour of the device support at all. Some device supports have
been written that check this hardware address field for changes every time they process, but they are in the minority and in
any case they do not provide any means to switch between different device support layers at runtime since no software is
present that can lookup a new value for the DSET field after ioclnit.

The extended device interface has been carefully designed to retain maximal backwards compatibility with existing
device and record support layers, and as aresult it cannot just introduce new routines into the DSET:

« Different record types have different numbers of DSET routines
 Every device support layer definesits own DSET structure layout
» Some device support layers add their own routines to the DSET (GPIB, BitBus)

Since both basic and extended device support layers have to co-exist within the same 10C, some rules are enforced
concerning whether the device address of a particular record is allowed to be changed:

1. Records that were connected at ioclnit to a device support layer that does not implement the extended interface are
never alowed to have address fields changed at runtime.

2. Extended device support layers are not required to implement both the add_r ecor d and del _r ecor d routines,
thus some devices may only alow one-way changes.

3. The old device support layer is informed and allowed to refuse an address change before the field change is made
(it does not get to see the new address).

4. The new device support layer is informed after the field change has been made, and it may refuse to accept the
record. In this case the record will be set as permanently busy (PACT=true) until an addressis accepted.

5. Record support layers can also get notified about this process by making their address field special, in which case
the record type’s special routine can refuse to accept the new address before it is presented to the device support
layer. Special cannot prevent the old device support from being disconnected however.

If an address change is refused, the change to the INP or OUT field will cause an error or exception to be passed to the
software performing the change. If thiswas a Channel Access client the result is to generate an exception callback.

To switch to a different device support layer, it is necessary to change the DTY P field before the INP or OUT field. The
change to the DTY P field has no effect until the latter field change takes place.

If arecordis set to I/O Interrupt scan but the new layer does not support this, the scan will be changed to Passive.

12.5.2 I nitialization/Registration

Device support that implements the extended behaviour must provide ani ni t routine in the Device Support Entry Table
(see Section 12.4.2 on page 189). In the first call to this routine (pass 0) it registers the address of its Device Support
eXtension Table (DSXT) in acal to devExt end.

The only exception to this registration requirement is when the device support uses a link type of CONSTANT. In this
circumstance the system will automatically register an empty DSXT for that particular support layer (both the
add_record and del _recor d routines pointed to by this DSXT do nothing and return zero). This exception allows
existing soft channel device support layers to continue to work without requiring any modification, since the iocCore
software already takes care of changesto PV_LINK addresses.

190 EPICS Application Developer’'s Guide 1/5/09

Chapter 12: Device Support
Extended Device Support

Thefollowing is an example of aDSXT and the initialization routine that registersit:

static struct dsxt nyDsxt = {
add_record, del _record

b

static long init(int pass) {
i f (pass==0) devExtend(&mryDsxt);
return O;

}

A call to devExt end can only be made during the first pass of the device support initialization process, and registers the
DSXT for that device support layer; if called at any other timeit will log an error message and immediately return.

12.5.3 Device Support eXtension Table

Thefull definition of st ruct dsxt isfound in devSup.h and currently looks like this:

typedef struct dsxt {
I ong (*add_record)(struct dbComon *precord);
I ong (*del _record)(struct dbComon *precord);
} dsxt;

There may be future additions to this table to support additional functionality; such extensions may only be made by
changing the devSup.h header file and rebuilding EPICS Base and al support modules, thus neither record types nor
device support are permitted to make any private use of thistable.

The two function pointers are the means by which the extended device support is notified about the record instancesit is
being given or that are being moved away from its control. In both cases the only parameter is a pointer to the record
concerned, which the code will have to cast to the appropriate pointer for the record type. The return value from the
routines should be zero for success, or an EPICS error status code.

12.5.4 Add Record Routine

| ong add_record(
struct dbCommon *precord);

Thisfunctionis called to offer anew record to the device support. It isalso called during ioclnit, in between the pass 0 and
pass 1 calls to the regular device support i ni t _r ecor d routine (described in Section 12.4.3 on page 189 above). When
converting an existing device support layer, this routine will usually be very similar to the old i ni t _r ecor d routine,
although in some cases it may be necessary to do alittle more work depending on the particular record type involved. The
extra code required in these cases can generally be copied straight from the record type implementation itself. This is
necessary because the record type has no knowledge of the address change that istaking place, so the device support must
perform any bitmask generation and/or readback value conversions itself. This document does not attempt to describe all
the necessary processing for the various different standard record types, although the following (incomplete) list is
presented as an aid to device support authors:

» mbbi/mbbo record types: Set SHFT, convert NOBT and SHFT into MASK
* bi/bo record types: Set SHFT, convert SHFT to MASK
« analog record types: Calculate ESLO and EOFF

» Output record types: Possibly read the current value from hardware and back-convert to VAL, or send the current
record output value to the hardware. This behaviour is not required or defined, and it’s not obvious what should be
done. There may be complications here with ao records using OROC and/or OlF=Incremental; solutions to this
issue have yet to be considered by the community.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 191

Chapter 12: Device Support
Extended Device Support

If theadd_r ecor d routine discovers any errors, say in the link address, it should return a non-zero error status value to
reject the record. Thiswill cause the record’s PACT field to be set, preventing any further processing of this record until
some other address change to it gets accepted.

12.5.5 Delete Record Routine

| ong del _record(
struct dbCommon *precord);

This function is called to notify the device support of arequest to change the hardware address of a record, and alow the
device support to free up any resources it may have dedicated to this particular record.

Before thisroutine is called, the record will have had its SCAN field changed to Passive if it had been set to I/O Interrupt.
This ensures that the device support’'sget _i oi nt _i nf o routine is never called after the the call to del _r ecor d has
returned successfully, although it may also lead to the possibility of missed interrupts if the address change is rejected by
thedel _record routine.

If the device support is unable to disconnect from the hardware for some reason, this routine should return a non-zero
error status value, which will prevent the hardware address from being changed. In this event the SCAN field will be
restored if it was originally set to 1/O Interrupt.

After a successfull call to del _record, the record’s DPVT field is set to NULL and PACT is cleared, ready for use by
the new device support.

12.5.6 I nit Record Routine

Thei ni t _record routine from the DSET (Section 12.4.3 on page 189) is called by the record type, and must still be
provided since the record type's per-record initialization is run some time after the initial call to the DSXT's
add_r ecor d routine. Most record types perform some initialization of record fields at this point, and an extended device
support layer may have to fix anything that the record overwrites. The following (incomplete) list is presented as an aid to
device support authors:

» mbbi/mbbo record types: Calculate MASK from SHFT
« analog record types: Calculate ESL O and EOFF
 Output record types: Perform readback of theinitial raw value from the hardware.

192 EPICS Application Developer’'s Guide 1/5/09

Chapter 13: Driver Support

13.1 Overview

It is not necessary to create a driver support module in order to interface EPICS to hardware. For simple hardware device
support is sufficient. At the present time most hardware support has both. The reason for thisis historical. Before EPICS
there was GTACS. During the change from GTACS to EPICS, record support was changed drastically. In order to
preserve all existing hardware support the GTACS drivers were used without change. The device support layer was
created just to shield the existing drivers form the record support changes.

Since EPICS now has both device and driver support the question arises: When do | need driver support and when don’t 1?
Lets give afew reasons why drivers should be created.

» The hardware is actually a subnet, e.g. GPIB. In this case a driver should be provided for accessing the subnet.
There is no reason to make the driver aware of EPICS except possibly for issuing error messages.

» The hardware is complicated. In this case supplying driver support helps modularized the software. The Allen
Bradley driver, which is also an example of supporting a subnet, is a good example.

» An existing driver, maintained by others, isavailable. | don't know of any examples.

» Thedriver should be general purpose, i.e. not tied to EPICS. The CAMAC driver is agood example. It is used by
other systems, such as CODA. Thisis perhaps the most important reason for driver support.

» For common devices, e.g. GPIB, CAN, CAMAC, etc. a generic driver layer should be created. This generic layer
should be independent of EPICS and independent of low level interfaces. It should also define an inteface for low
level drivers. This allows low level interfaces to be replaced without impacting 1OC records, record support, or
device support.

The only thing needed to interface a driver to EPICS isto provide a driver support module, which can be layered on top of
an existing driver, and provide a database definition for the driver. The driver support module is described in the next
section. The database definition is described in chapter “ Database Definition”.

13.2 Device Drivers

Device drivers are modules that interface directly with the hardware. They are provided to isolate device support routines
from details of how to interface to the hardware. Device drivers have no knowledge of the internals of database records.
Thus there is no necessary correspondence between record types and device drivers. For example the Allen Bradley driver
provides support for many different types of signals including analog inputs, analog outputs, binary inputs, and binary
outputs.

In general only device support routines know how to call device drivers. Since device support varieswidely from deviceto
device, the set of routines provided by adevice driver is almost completely driver dependent. The only requirement is that
routinesr eport andi ni t must be provided. Device support routines must, of course, know what routines are provided
by adriver.

Filedr vSup. h describes the format of adriver support entry table. The driver support module must supply adriver entry
table. An example definition is:

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 193

Chapter 13: Driver Support
Device Drivers

LOCAL long report();
LOCAL long init();

struct {
| ong numnber ;
DRVSUPFUN report,;
DRVSUPFUN init;

} drvAb={
2,
report,
init

1

epi csExport Address(drvet, drvQi b);
The above exampleisfor the Allen Bradley driver. It has an associated ascii definition of:
driver (drvQi b)
Thusit is seen that the driver support module should supply two EPICS callable routines: i nt and r eport .

13.2.0.1 init

This routine, which has no arguments, is called by i ocl ni t. The driver is expected to look for and initialize the
hardware it supports. As an example the init routine for Allen Bradley is:

LOCAL long init()
{

return(ab_driver_init());
}
13.2.0.2 report

The report routine is called by the dbi or, an 10C test routine. It is responsible for producing a report describing the
hardware it found at init time. It is passed one argument, level, which is a hint about how much information to display. An
example, taken from Allen Bradley, is:

LOCAL long report(int level)

{
return(ab_i o_report(level));
}
Guidelinesfor level are asfollows:
Level=0 Display aone line summary for each device
Level=1 Display more information
Level=2 Display alot of information. It is even permissible to

prompt for what is wanted.

13.2.0.3 Hardware Configuration
Hardware configuration includes the following:

* VME/VXI address space
* VME Interrupt Vectors and levels
* Device Specific Information
The information contained in hardware links supplies some but not all configuration information. In particular it does not

define the VME/VXI addresses and interrupt vectors. This additional information is what is meant by hardware
configuration in this chapter.

194 EPICS Application Developer’'s Guide 1/5/09

Chapter 13: Driver Support
Device Drivers

The problem of defining hardware configuration information is an unsolved problem for EPICS. At one time
configuration information was defined in nodul e_t ypes.h Many existing device/driver support modules still uses this
method. It should NOT be used for any new support for the following reasons:

» Thereisno way to manage thisfile for the entire EPICS community.
* It does not allow arbitrary configuration information.
* Itishard for usersto determine what the configuration information is.

The fact that it is now easy to include ASCII definitions for only the device/driver support used in each IOC makes the
configuration problem much more manageable than previously. Previously if you wanted to support anew VME modules
it was necessary to pick addresses that nothing in modul e_t ypes.h was using. Now you only have to check modules
you are actually using.

Since there are no EPICS defined rules for hardware configuration, the following minimal guidelines should be used:

» Never use #def i ne to specify things like VME addresses. Instead use variables and assign default values. Allow
the default values to be changed before ioclnit is executed. The best way is to supply a global routine that can be
invoked from the |OC startup file. Note that al arguments to such routines should be one of the following:

i nt
char *
doubl e

* Call the routines described in chapter “Device Support Library” whenever possible.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 195

Chapter 13: Driver Support
Device Drivers

196 EPICS Application Developer’'s Guide 1/5/09

Chapter 14: Static Database Access

14.1 Overview

An10C database is created on a Unix system via a Database Configuration Tool and stored in a Unix file. EPICS provides
two sets of database access routines: Static Database Access and Runtime Database Access. Static database access can be
used on Unix or 10C database files. Runtime database requires an initialized |OC databases. Static database access is
described in this chapter and runtime database access in the next chapter.

Static database access provides asimplified interface to a database, i.e. much of the complexity is hidden. DBF_MENU and
DBF_DEVI CE fields are accessed viaa common type called DCT_MENU. A set of routines are provided to simplify access
to link fields. All fields can be accessed as character strings. This interface is called static database access because it can
be used to access an uninitialized as well as an initialized database.

Before accessing database records, the files describing menus, record types, and devices must be read via
dbReadDat abase or dbReadDat abaseFP. These routines, which are also used to load record instances, can be
called multiple times.

Database Configuration Tools (DCTs) should manipulate an EPICS database only viathe static database access interface.
An 10C database is created on a host system via a database configuration tool and stored in a host file with afile extension
of ".db". Threeroutines (dbReadDat abase, dbReadDat abaseFP and dbW i t eRecor d) access the host database
file. These routines read/write a database file to/from a memory resident EPICS database. All other access routines
mani pulate the memory resident database.

An include file dbSt ati cLi b. h contains all the definitions needed to use the static database access library. Two
structures (DBBASE and DBENTRY) are used to access a database. The fields in these structures should not be accessed
directly. They are used by the static database access library to keep state information for the caller.

14.2 Definitions

14.2.1 DBBASE

Multiple memory resident databases can be accessed simultaneously. The user must provide definitionsin the form:
DBBASE *pdbbase;

NOTE: On an IOC pdbbaseisa global variable, which isaccessable if you include dbAccess.h

14.2.2 DBENTRY

A typical declaration for a database entry structureis:

DBENTRY *pdbentry;
pdbent r y=dbAl | ocEnt r y(pdbbase);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 197

Chapter 14: Static Database Access
Allocating and Freeing DBBASE

Most static access to a database is viaa DBENTRY structure. As many DBENTRYs as desired can be allocated.

The user should NEVER access the fields of DBENTRY directly. They are meant to be used by the static database access
library.

Most static access routines accept an argument which contains the address of a DBENTRY. Each routine uses this structure
to locate the information it needs and gives values to as many fields in this structure as possible. All other fields are set to
NULL.

14.2.3 Field Types

Each database field has atype as defined in the next chapter. For static database access anew and simpler set of field types
are defined. In addition, at runtime, a database field can be an array. With static database access, however, al fields are
scalars. Static database access field types are called DCT field types.

The DCT field types are:

* DCT_STRING: Character string.

» DCT_INTEGER: Integer value

* DCT_REAL: Foating point number

 DCT_MENU: A set of choice strings

« DCT_MENUFORM: A set of choice strings with associated form.

* DCT_INLINK: Input Link

 DCT_OUTLINK: Qutput Link

 DCT_FWDLINK: Forward Link

* DCT_NOACCESS: A private field for use by record access routines

A DCT_STRI NGfield contains the address of a NULL terminated string. The field types DCT_| NTEGER and DCT__REAL
are used for numeric fields. A field that has any of these types can be accessed viathe dbGet St ri ng, dbPut St ri ng,
dbVeri fy, and dbGet Range routines.

Thefield type DCT_MENU has an associated set of strings defining the choices. Routines are avail able for accessing menu
fields. A menu field can also be accessed via the dbGet Stri ng, dbPut Stri ng, dbVeri fy, and dbGet Range
routines.

The field type DCT_MENUFORMis like DCT_MENU but in addition the field has an associated link field. The information
for thelink field can be entered via a set of form manipulation fields.

DCT_I NLI NK (input), DCT_QUTLI NK (output), and DCT_FWDLI NK (forward) specify that the field is a link, which has
an associated set of static access routines described in the next subsection. A field that has any of these types can also be
accessed viathe dbGet St ri ng, dbPut Stri ng, dbVeri fy, and dbGet Range routines.

14.3 Allocating and Freeing DBBASE

14.3.1 dbAllocBase
DBBASE *dbAl | ocBase(voi d);

Thisroutine allocates and initializes a DBBASE structure. It does not return if it is unable to allocate storage.

198 EPICS Application Developer’'s Guide 1/5/09

Chapter 14: Static Database Access
DBENTRY Routines

dbAl | ocBase alocates and initidlizes a DBBASE structure. Normally an application does not need to call
dbAl | ocBase because a cal to dbReadDat abase or dbReadDat abaseFP automatically calls this routine if
pdbbase isnull. Thus the user only hasto supply code like the following:

DBBASE *pdbbase=0;
status = dbReadDat abase(&ydbbase, "sanpl e. db",
"<pat h>", "<nmacro substitutions>");

The static database access library allows applications to work with multiple databases, each referenced via a different
(DBBASE *) pointer. Such applications may find it necessary to call dbAl | ocBase directly.

dbAl | ocBase doesnot return if it is unable to allocate storage.

14.3.2 dbFreeBase

voi d dbFr eeBase(DBBASE *pdbbase);
dbFr eeBase freesthe entire database reference by pdbbase including the DBBASE structure itself.

14.4 DBENTRY Routines

14.4.1 Alloc/Free DBENTRY

DBENTRY *dbAl | ocEnt r y(DBBASE *pdbbase) ;
voi d dbFreeEntry(DBENTRY *pdbentry);

These routines alocate, initialize, and free DBENTRY structures. The user can allocate and free DBENTRY structures as
necessary. Each DBENTRY is, however, tied to a particular database.

dbAl | ocEntry and dbFr eeEnt ry act as a pair, i.e. the user calls dbAl | ocEnt ry to create a new DBENTRY and
calls dbFr eeEnt r y when done.

14.4.2 dbl nitEntry dbFinishEntry

voi d dbl ni t Ent ry(DBBASE * pdbbase, DBENTRY *pdbentry);
voi d dbFi ni shEnt ry(DBENTRY *pdbentry);

Theroutinesdbl ni t Ent ry and dbFi ni shEnt ry are provided in case the user wants to allocate a DBENTRY structure
on the stack. Note that the caler MUST call dbFi ni shEntry before returning from the routine that cals
dbl ni t Ent ry. An example of how to use these routinesis:

i nt xxx(DBBASE *pdbbase)

{
DBENTRY dbentry;
DBENTRY *pdbentry = &dbentry;
dbl ni t Entry(pdbbase, pdbentry);
dbFi ni shEnt ry(pdbentry);

}

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 199

Chapter 14: Static Database Access
Read and Write Database

14.4.3 dbCopyEntry
dbCopyEntry
Contents

DBENTRY *dbCopyEnt r y(DBENTRY *pdbentry);
voi d dbCopyEnt ryCont ent s(DBENTRY * pfrom DBENTRY *pt 0);

Theroutine dbCopyEnt r y allocates a new entry, viaacall to dbAl | ocEnt ry, copies the information from the original
entry, and returns the result. The caller must free the entry, viadbFr eeEnt r y when finished with the DBENTRY.

Theroutine dbCopyEnt r yCont ent s copies the contents of pfrom to pto. Code should never perform structure copies.

14.5 Read and Write Database

14.5.1 Read Database File

| ong dbReadDat abase(DBBASE **ppdbbase, const char *fil enane,
char *path, char *substitutions);

| ong dbReadDat abaseFP(DBBASE **ppdbbase, FI LE *f p,
char *path, char *substitutions);

| ong dbPat h(DBBASE *pdbbase, const char *path);

| ong dbAddPat h(DBBASE *pdbbase, const char *path);

dbReadDat abase and dbReadDat abaseFP both read a file containing database definitions as described in chapter
“Database Definitions’. If *ppdbbase is NULL, dbAl | ocBase is automatically invoked and the return address
assigned to *pdbbase. The only difference between the two routines is that one accepts afile name and the other a"FILE
*"_Any combination of these routines can be called multiple times. Each adds definitions with the rules described in
chapter “Database Definitions’.

TheroutinesdbPat h and dbAddPat h specify paths for use by include statements in database definition files. These are
not normally called by user code.

14.5.2 Write Database Definitons

| ong dbWiteMenu(DBBASE *pdbbase, char *fil ename, char *nmenuNane) ;

| ong dbWiteMenuFP(DBBASE *pdbbase, FI LE *fp, char *nmenuNane) ;

| ong dbWiteRecordType(DBBASE *pdbbase, char *fil enanme, char *recordTypeNane) ;
| ong dbWiteRecordTypeFP(DBBASE *pdbbase, FI LE *fp, char *recordTypeNane);
l ong dbWiteDevi ce(DBBASE *pdbbase, char *fil enane);

l ong dbW it eDevi ceFP(DBBASE *pdbbase, FI LE *fp);

[ong dbWiteDriver(DBBASE *pdbbase, char *fil enane);

l ong dbWiteDriver FP(DBBASE *pdbbase, FI LE *fp);

l ong dbW it eRegi strar FP(DBBASE *pdbbase, FI LE *fp);

l ong dbWiteFuncti onFP(DBBASE *pdbbase, FI LE *fp);

| ong dbWiteVari abl eFP(DBBASE *pdbbase, FI LE *fp);

| ong dbWit eBr eakt abl e(DBBASE *pdbbase, const char *fil enane);

[ong dbW it eBr eakt abl eFP(DBBASE *pdbbase, FI LE *f p);

200 EPICS Application Developer’'s Guide 1/5/09

Chapter 14: Static Database Access
Manipulating Record Types

Each of these routines writes files in the same format accepted by dbReadDat abase and dbReadDat abaseFP. Two
versions of each type are provided. The only differenceis that one accepts a filename and the other a"FI LE*". Thus only
one of each type has to be described.

dbW i t eMenu writes the description of the specified menu or, if menuNane isNULL, the descriptions of all menus.

dbW it eRecor dType writes the description of the specified record type or, if recor dTypeNamne is NULL, the
descriptions of al record types.

dbW i t eDevi ce writes the description of al devices to stdout.

dbWi t eDri ver writesthe description of all driversto stdout.

dbW i t eRegi st r ar FP writesthelist of all registrars to the given open file (no filename version is provided).
dbW i t eFunct i onFP writesthelist of al functions to the given open file (no filename version is provided).

dbW i t eVari abl eFP writesthelist of al variablesto the given open file (no filename version is provided).

14.5.3 Write Record I nstances

| ong dbWiteRecor d(DBBASE *pdbbase, char * file,
char *precordTypeNane,int |evel);

| ong dbW it eRecor dFP(DBBASE *pdbbase, FI LE *f p,
char *precordTypeNane,int |evel);

Each of these routines writes files in the same format accepted by dbReadDat abase and dbReadDat abaseFP. Two
versions of each type are provided. The only differenceisthat one accepts a filename and the other a“FI LE*". Thus only
one of each type has to be described.

dbW i t eRecor d writes record instances. If pr ecor dTypeNane is NULL, then the record instances for al record
types are written, otherwise only the records for the specified type are written. | evel has the following meaning:

» 0- Writeonly prompt fields that are different than the default value.
» 1- Writeonly the fields which are prompt fields.
e 2 - Writethe values of all fields.

14.6 Manipulating Record Types

14.6.1 Get Number of Record Types
int dbGet NRecordTypes(DBENTRY *pdbentry);

This routine returns the number of record types in the database.

14.6.2 L ocate Record Type

| ong dbFi ndRecor dType(DBENTRY *pdbentry,
char *recordTypeNane);

| ong dbFi rst Recor dType(DBENTRY *pdbentry);

| ong dbNext Recor dType(DBENTRY *pdbentry);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 201

Chapter 14: Static Database Access
Manipulating Field Descriptions

dbFi ndRecor dType locates a particular record type. dbFi r st Recor dType locates the first, in aphabetical order,
record type. Given that DBENTRY pointsto a particular record type, dbNext Recor dType locates the next record type.
Each routine returns O for success and a non zero status value for failure. A typical code segment using these routinesis:

status = dbFirstRecordType(pdbentry);
whil e(!status) {
/*Do somet hi ng*/
status = dbNext RecordType(pdbentry)
}

14.6.3 Get Record Type Name

char *dbGet Recor dTypeNane(DBENTRY *pdbentry);

This routine returns the name of the record type that DBENTRY currently references. This routine should only be called
after a successful call to dbFi ndRecor dType, dbFi r st Recor dType, or dbNext Recor dType. It returns NULL if
DBENTRY does not point to arecord description.

14.7 Manipulating Field Descriptions

The routines described in this section all assume that DBENTRY references a record type, i.e. that
dbFi ndRecor dType, dbFi r st Recor dType, or dobNext Recor dType has returned success or that arecord instance
has been successfully located.

14.7.1 Get Number of Fields
int dbGCet NFi el ds(DBENTRY *pdbentry,int dctonly);
Returns the number of fields for the record instance that DBENTRY currently references.

14.7.2 Locate Field

| ong dbFirstFiel d(DBENTRY *pdbentry,int dctonly);
| ong dbNext Fi el d(DBENTRY *pdbentry,int dctonly);

These routines are used to locate fields. If any of these routines returns success, then DBENTRY references that field
description.

14.7.3 Get Field Type
int dbGetFiel dType(DBENTRY *pdbentry);

This routine returns the integer value for a DCT field type, see Section 14.2.3 on page 198, for a description of the field
types.

14.7.4 Get Field Name
char *dbGet Fi el dNanme(DBENTRY *pdbentry);

202 EPICS Application Developer’'s Guide 1/5/09

Chapter 14: Static Database Access
Manipulating Record Attributes

This routine returns the name of the field that DBENTRY currently references. It returns NULL if DBENTRY does not
point to afield.

14.7.5 Get Default Value

char *dbGet Def aul t (DBENTRY *pdbentry);

This routine returns the default value for the field that DBENTRY currently references. It returns NULL if DBENTRY
does not point to afield or if the default valueis NULL.

14.7.6 Get Field Prompt

char *dbGet Pronpt (DBENTRY *pdbentry);
i nt dbGet Pr onpt G oup(DBENTRY * pdbentry);

The dbGet Pr onpt routine returns the character string prompt value, which describes the field. dbGet Pr onpt G- oup
returns the field group as described in guigroup.h.

14.8 Manipulating Record Attributes

A record attribute is a "psuedo” field definition attached to arecord type. If a attribute value is assigned to a psuedo field
name then all record instances of that record type appear to have that field with the defined value. All attribute fields are
DCT_STRING fields.

Two field attributes are automatically created: RTYP and VERS. RTYP is set equal to ,the record type name. VERS is
initialized to the value "none specified" but can be changed by record support.

14.8.1 dbPutRecord
Attribute

| ong dbPut Recor dAttri but e(DBENTRY *pdbentry,
char *nane, char*val ue)

This creates or modifies attribute nane with val ue.

14.8.2 dbGetRecord
Attribute

| ong dbGet Recor dAttri but e(DBENTRY *pdbentry, char *nane);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 203

Chapter 14: Static Database Access
Manipulating Record Instances

14.9 Manipulating Record I nstances

With the exception of dbFindRecord, each of the routines described in this section require that DBENTRY references a
valid record type, i.e. that dbFi ndRecor dType, dbFi r st Recor dType, or dbNext Recor dType has been called
and returned success.

14.9.1 Get Number of Records
i nt dbGet NRecor ds(DBENTRY *pdbentry);

Returns the number of record instances for the record type that DBENTRY currently references.

14.9.2 L ocate Record

| ong dbFi ndRecor d(DBENTRY *pdbentry, char *precor dNane) ;
| ong dbFi r st Recor d(DBENTRY *pdbentry);
| ong dbNext Recor d(DBENTRY *pdbentry);

These routines are used to locate record instances. If any of these routines returns success, then DBENTRY references the
record. dbFi ndRecor d can be called without DBENTRY referencing a valid record type. dbFi r st Recor d only
works if DBENTRY references a record type. The dbDunpRecor ds example given at the beginning of this chapter
shows how these routines can be used.

dbFi ndRecor d also calls dbFi ndFi el d if the record name includes a field name, i.e. it endsin “.XXX". The routine
dbFoundFi el d returns (TRUE, FALSE) if the field (was, was not) found. If it was not found, then dbFi ndFi el d must
be called before individual fields can be used.

14.9.3 Get Record Name

char *dbCGet Recor dNanme(DBENTRY *pdbentry);

This routine only works properly if called after dbFi ndRecor d, dbFi r st Recor d, or dbNext Recor d has returned
success.

14.9.4 Create/Delete/Free Record

| ong dbCreat eRecor d(DBENTRY *pdbentry, char *precordNane);
| ong dbDel et eRecor d(DBENTRY *pdbentry);
| ong dbFreeRecor ds(DBBASE *pdbbase);

dbCr eat eRecor d, which assumes that DBENTRY references a valid record type, creates a new record instance and
initializes it as specified by the record description. If it returns success, then DBENTRY references the record just created.
dbDel et eRecor d deletes asingle record instance/. dbFr eeRecor ds deletes all record instances.

14.9.5 Copy Record

| ong dbCopyRecor d(DBENTRY *pdbentry, char *newRecor dNane
int overWiteOK)

204 EPICS Application Developer’'s Guide 1/5/09

Chapter 14: Static Database Access
Manipulating Record Instances

This routine copies the record instance currently referenced by DBENTRY. Thus it creates and new record with the name
newRecor dNanme that is of the same type as the original record and copies the original records field values to the new
record. If newRecor dNane aready exists and over Wi t eOK is true, then the original newRecor dNare is deleted
and recreated. If dbCopyRecor d completes successfully, DBENTRY references the new record.

14.9.6 Rename Recor d
| ong dbRenanmeRecor d(DBENTRY *pdbentry, char *newnane)

This routine renames the record instance currently referenced by DBENTRY. If dbRenaneRecor d completes
successfully, DBENTRY references the renamed record.

14.9.7 Record Visibility

These routines are for use by graphical configuration tools.

| ong dbVi si bl eRecor d(DBENTRY *pdbentry);
| ong dbl nvi si bl eRecor d(DBENTRY * pdbentry);
i nt dbl sVisi bl eRecor d(DBENTRY *pdbentry);

dbVi si bl eRecord sets a record to be visble dblnvisibleRecord sets a record invisible
dbl sVi si bl eRecor d returns TRUE if arecord is visible and FAL SE otherwise.

14.9.8 Find Field

| ong dbFi ndFi el d(DBENTRY *pdbentry, char *pfiel dNane);
i nt dbFoundFi el d(DBENTRY *pdbentry);

Given that a record instance has been located, dbFi ndFi el d finds the specified field. If it returns success, then
DBENTRY references that field. dbFoundFi el d returns (FALSE, TRUE) if (no field instance is currently available, a
field instance is available).

14.9.9 Get/Put Field Values

char *dbGet Stri ng(DBENTRY *pdbentry);

| ong dbPut String(DBENTRY *pdbentry, char *pstring);
char *dbVeri fy(DBENTRY *pdbentry, char *pstring);
char *dbGet Range(DBENTRY *pdbentry);

i nt dbl sDef aul t Val ue(DBENTRY *pdbentry);

These routines are used to get or change field values. They work on all the database field types except DCT_NQACCESS
but should NOT be used to prompt the user for information for DCT_MENU, DCT_MENUFORM or DCT_LI NK_xxx fields.
dbVeri fy returns (NULL, a message) if the string is (valid, invalid). Please note that the strings returned are volatile, i.e.
the next call to aroutines that returns a string will overwrite the value returned by a previous call. Thusit is the caller’s
responsibility to copy the strings if the value must be kept.

DCT_MENU, DCT_MENUFCRM and DCT_LI NK_xxx fields can be manipulated via routines described in the following
sections. If, however dbCet String and dbPut Stri ng are used, they do work correctly. For these field types
dbGet St ri ng and dbPut St ri ng are intended to be used only for creating and restoring versions of a database.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 205

Chapter 14: Static Database Access
Manipulating Menu Fields

14.10 Manipulating Menu Fields

These routines should only be used for DCT_MENU and DCT_MENUFORM fields. Thus they should only be called if
dbFi ndFi el d, dbFirstFi el d, or dbNext Fi el d has returned success and the field type is DCT_MENU or
DCT_MENUFCRM

14.10.1 Get Number of Menu Choices
i nt dbGet NMenuChoi ces(DBENTRY *pdbentry);

This routine returns the number of menu choices for menu.

14.10.2 Get Menu Choice
char **dbGet MenuChoi ces(DBENTRY *pdbentry);

This routine returns the address of an array of pointers to strings which contain the menu choices.

14.10.3 Get/Put Menu

i nt dbGet Menul ndex(DBENTRY *pdbentry);
| ong dbPut Menul ndex(DBENTRY *pdbentry,int index);
char *dbGet MenuStri ngFr om ndex(DBENTRY *pdbentry,int index);
i nt dbGet Menul ndexFr ontt ri ng(DBENTRY *pdbentry,
char *choi ce);

NOTE: These routines do not work if the current field value contains a macro definition.

dbGet Menul ndex returns the index of the menu choice for the current field, i.e. it specifies which choice to which the
field is currently set. dbPut Menul ndex setsthe field to the choice specified by the index.

dbGet MenuSt ri ngFrom ndex returns the string value for a menu index. If the index value is invalid NULL is
returned. dbGet Menul ndexFr ontt ri ng returns the index for the given string. If the string is not avalid choice a-1
isreturned.

14.10.4 L ocate M enu
dbMenu *dbFi ndMenu(DBBASE *pdbbase, char *nane);

dbFi ndMenu is most useful for runtime use but is a static database access routine. This routine just finds a menu with the
given name.

206 EPICS Application Developer’'s Guide 1/5/09

Chapter 14: Static Database Access
Manipulating Link Fields

14.11 Manipulating Link Fields

14.11.1 Link Types

Links are the most complicated types of fields. A link can be a constant, reference afield in another record, or can refer to
a hardware device. Two additional complications arise for hardware links. The first is that field DTYP, which is a menu
field, determines if the | NP or QUT field is a device link. The second is that the information that must be specified for a
device link is bus dependent. In order to shelter database configuration tools from these complications the following is
done for static database access.

« Static database access will treat DTYP as a DCT_MENUFORM(ield.

» The information for the link field related to the DCT_MENUFCRM can be entered via a set of form manipulation
routines associated with the DCT_MENUFCRMfield. Thus the link information can be entered via the DTYP field
rather than the link field.

» The Form routines described in the next section can also be used with any link field.
Each link is one of the following types:

 DCT_LINK_CONSTANT: Constant value.
e DCT_LINK_PV: A process variablelink.
* DCT_LINK_FORM: A link that can only be processed viathe form routines described in the next chapter.

Database configuration tools can change any link between being a constant and a process variable link. Routines are
provided to accomplish these tasks.

The routines dbGet St ri ng, dbPut St ri ng, and dbVeri fy can be used for link fields but the form routines can be
used to provide afriendlier user interface.

14.11.2 All Link Fields

int dbGet NLi nks(DBENTRY *pdbentry);
| ong dbGet Li nkFi el d(DBENTRY *pdbentry,int index)
int dbGetLi nkType(DBENTRY *pdbentry);

These are routines for manipulating DCT_xxxLI NK fields. dbGet NLi nks and dbGet Li nkFi el d are used to walk
through all the link fields of a record. dbGet Li nkType returns one of the values. DCT_LI NK_CONSTANT,
DCT_LI NK_PV, DCT_LI NK_FORM or thevalue-1if itiscaled for anillegal field.

14.11.3 Constant and Process Variable Links

[ong dbCvt Li nkToConst ant (DBENTRY *pdbentry);
[ong dbCvt Li nkToPvl i nk(DBENTRY *pdbentry);

These routines should be used for modifying DCT_LI NK_CONSTANT or DCT_LI NK_PV links. They should not be used
for DCT_LI NK_FORMIinks, which should be processed via the associated DCT_ MENUFORMfield described above.

14.12 Manipulating MenuForm Fields

These routines are used with a DCT_MENUFORM field (a DTYP field) to manipulate the associated DCT | NLI NK or
DCT_QUTLI NK field. They can also be used on any DCT_| NLI NK, DCT_QUTLI NK, or DCT_FWDLI NK field.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 207

Chapter 14: Static Database Access
Manipulating MenuForm Fields

14.12.1 Alloc/Free Form

i nt dbAl | ocFor m(DBENTRY *pdbentry)
| ong dbFr eeFor m(DBENTRY *pdbentry)

dbAl | ocFor mallocates storage needed to manipulate forms. The return value is the number of elementsin the form. If
the current field value contains a macro definition, the number of lines returned is 0.

14.12.2 Get/Put Form

char **dbGet For nPr onpt (DBENTRY * pdbentry)
char **dbGet For nVal ue(DBENTRY *pdbentry)
| ong dbPut For m{ DBENTRY *pdbentry, char **val ue)

dbGet For nPronpt returns a pointer to an array of pointers to character strings specifying the prompt string.
dbGet For mVal ue returns the current values. dbPut For m which can use the same array of values returned by
dbGet For m sets new values.

14.12.3 Verify Form
char **dbVeri f yFor m{ DBENTRY *pdbentry, char **val ue)

dbVer i f yFor mcan be called to verify user input. It returns NULL if no errors are present. If errors are present, it returns
apointer to an array of character strings containing error messages. Linesin error have amessage and correct lines have a
NULL string.

14.12.4 Get Related Field

char *dbCet Rel at edFi el d(DBENTRY *pdbentry)

This routine returns the field name of the related field for aDCT_MENUFORM field. If it is called for any other type of
field it returns NULL.

14.12.5 Example

The following is code showing use of these routines:

char **val ue;

char **pronpt;
char **error;

int n;

n = dbAl | ocFor m(pdbentry);

i f(n<=0) {<Error>}

pronpt = dbGet For mPr onpt (pdbentry);

val ue = dbGet For nVval ue(pdbentry);

for(i=0; i<n; i++) {
printf("% (%) : \n",pronmpt[i],value[i]);
/*The follw ng accepts input from stdin*/
scanf ("9%",valuel[i]);

}

error = dbVerifyForm pdbentry, val ue);

208 EPICS Application Developer’'s Guide 1/5/09

Chapter 14: Static Database Access
Manipulating Information Items

if(error) {
for(i=0; i<n; i++) {
if(error[i]) printf("Error: % (%) %\n", pronpt[i],
value[i],error[i]);

}else {
dbPut For m(pdbent ry, val ue)
}
dbFr eeFor n{ pdbentry) ;
All value strings are MAX_STRI NG_SI ZE in length.

A set of form calls for a particular DBENTRY, MUST begin with a call to dbAl | ocFor mand end with a call to
dbFr eeFor m The values returned by dbGet For nPr onpt , dbGet For nVal ue, and dbVer i f yFor mare valid only
between the callsto dbAl | ocFor mand dbFr eeFor m

14.13 Manipulating I nformation I tems

Information items are stored as a list attached to each individual record instance. All routines listed in this section require
that the DBENTRY argument refer to avalid record instance.

14.13.1 L ocate I tem

| ong dbFirstlnfo(DBENTRY *pdbentry);
| ong dbNext | nf o(DBENTRY *pdbentry);
| ong dbFi ndl nf o(DBENTRY *pdbentry, const char *nane);

There are two ways to locate info items, by scanning through the list using first/next, or by asking for the item by name.
These routines set pdbent ry to refer to the info item and return O, or return an error code if no info item isfound.

14.13.2 Get I1tem Name
const char * dbGet | nf oName(DBENTRY *pdbentry);

Returns the name of the info item referred to by pdbent ry, or aNULL pointer if no item isreferred to.

14.13.3 Get/Set Item String Value

const char * dbGet|nfoString(DBENTRY *pdbentry);
| ong dbPut | nfoString(DBENTRY *pdbentry, const char *string);

These routines provide access to the currently selected items' string value. When changing the string value using
dbPut | nf oSt i ng, the character string provided will be copied, with additional memory being allocated as necessary.
Users are advised not to make continuously repeated callsto dbPut | nf oSt ri ng at IOC runtime as this could fragment
the free memory heap. The Put routine returns O if Ok or an error code; the Get routine returns NULL on error.

14.13.4 Get/Set Item Pointer Value

voi d * dbGet | nf oPoi nt er (DBENTRY *pdbentry);
[ong dbPut | nf oPoi nt er (DBENTRY *pdbentry, void *pointer);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 209

Chapter 14: Static Database Access
Find Breakpoint Table

Each info item includes space to store asingle voi d* pointer as well asthe value string. Applications using the info item
may set this as often as they wish. The Put routine returns O if Ok or an error code; the Get routine returns NULL on error.

14.13.5 Create/Delete | tem

| ong dbPut | nf o(DBENTRY *pdbentry, const char *nane, const char *string);
| ong dbDel et el nf o(DBENTRY *pdbentry);

A new info item can be created by calling dbPut | nf o. If an item by that name aready exists its value will be replaced
with the new string, otherwise storage is allocated and the name and value strings copied into it. The function returns 0 on
success, or an error code.

When calling dbDel et el nf o, the pdbentry must refer to the item to be removed (using dbFi ndFi r st /dbFi ndNext
or dbFi ndl nf 0). The function returns 0 on success, or an error code.

14.13.6 Convenience Routine
const char * dbGet| nfo(DBENTRY *pdbentry, const char *namne);

It is common to want to look up the value of anamed info itemin one call, and dbGet | nf o is provided for this purpose.
It returnsa NULL pointer if no info item exists with the given name.

14.14 Find Breakpoint Table

br kTabl e *dbFi ndBr kTabl e(DBBASE *pdbbase, char *nane)

This routine returns the address of the specified breakpoint table. It is normally used by the runtime breakpoint conversion
routines so will not be discussed further.

14.15 Dump Routines

voi d dbDunpPat h(DBBASE * pdbbase)

voi d dbDunpRecor d(DBBASE *pdbbase, char *precordTypeNane,int |evel);
voi d dbDunpMenu(DBBASE *pdbbase, char *nmenuNane) ;

voi d dbDunpRecor dType(DBBASE *pdbbase, char *recor dTypeNane) ;

voi d dbDunpFi el d(DBBASE * pdbbase, char *recordTypeNane, char *fnane);
voi d dbDunpDevi ce(DBBASE *pdbbase, char *recordTypeNane) ;

voi d dbDunpDri ver (DBBASE *pdbbase) ;

voi d dbDunpRegi st rar (DBBASE *pdbbase) ;

voi d dbDunpFuncti on(DBBASE *pdbbase) ;

voi d dbDunpVari abl e(DBBASE *pdbbase) ;

voi d dbDunpBr eakt abl e(DBBASE * pdbbase, char *nane);

voi d dbPvdDunp(DBBASE *pdbbase, i nt verbose);

voi d dbReport Devi ceConfi g(DBBASE *pdbbase, FI LE *report);

These routines are used to dump information about the database. dbDunpRecor d, dbDunpMenu, dbDunpDri ver,
dbDunpRegi strar and dbDunpVar i abl e just call the corresponding doWritexxxFP routine specifying stdout for
the file. dbDunpRecor dType, dbDunpFi el d, and dbDunpDevi ce give interna information useful on an ioc.
These commands can be executed viaiocsh. Just specify pdbbase as the first argument.

210 EPICS Application Developer’'s Guide 1/5/09

Chapter 14: Static Database Access
Examples

14.16 Examples

14.16.1 Expand Include

Thisexampleislikethe dbExpand utility, except that it doesn’t allow path or macro substitution options, It reads a set of
database definition files and writes al definitions to stdout. All include statements appearing in the input files are
expanded.

/* dbExpand.c */

#incl ude <stdlib. h>

#i ncl ude <stddef. h>

#i ncl ude <stdio. h>

#i ncl ude <epi csPrint. h>
#i ncl ude <dbStaticLib. h>

DBBASE *pdbbase = NULL;

int mai n(int argc, char **argv)
{

| ong st at us;

i nt i;

i nt arg;

i f(argc<2) {
printf("usage: expandlnclude filel.db file2.db...\n");
exit(0);

}

for(i=1; i<argc; i++) {
status = dbReadDat abase(&dbbase, argv[i], NULL, NULL);
i f(!status) continue;
fprintf(stderr,"For input file %",argv[i]);
err Message(status, "from dbReadDat abase") ;

}

dbW it eMenuFP(pdbbase, st dout, 0) ;

dbW it eRecor dTypeFP(pdbbase, st dout, 0);

dbW it eDevi ceFP(pdbbase. st dout) ;

dbWit eDri ver FP(pdbbase. st dout) ;

dbW i t eRecor dFP(pdbbase, st dout, 0, 0) ;

return(0);

14.16.2 dbDumpRecords
NOTE: This exampleis similar but not identical to the actual dbDunpRecor ds routine.

The following example demonstrates how to use the database access routines. The example shows how to locate each
record and display each field.

voi d dbDunpRecor ds(DBBASE *pdbbase)
{

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 211

Chapter 14: Static Database Access
Examples

DBENTRY *pdbentry;
|l ong status;

pdbentry = dbAl | ocEntry(pdbbase);
status = dbFirstRecordType(pdbentry);
if(status) {printf(”No record descriptions\n”);return;}
whil e(!status) {
printf(”record type: %", dbCGet Recor dTypeNane(pdbentry));
status = dbFirstRecord(pdbentry);
if(status) printf(” No Records\n”);
else printf(”\n Record: %\ n”, dbGet Recor dNane(pdbentry));
whil e(!status) {
status = dbFirstFiel d(pdbent ry, TRUE)

i f(status) printf(” No Fields\n”);
whil e(!status) {
printf(” %: %", dbGet Fi el dNane(pdbentry),

dbGet Stri ng(pdbentry));
st at us=dbNext Fi el d(pdbent ry, TRUE)

}
status = dbNext Record(pdbentry);

}
status = dbNext RecordType(pdbentry);

}
printf(”End of all Records\n”);
dbFr eeEnt ry(pdbentry);

212 EPICS Application Developer’'s Guide 1/5/09

Chapter 15: Runtime Database Access

15.1 Overview

This chapter describes routines for manipulating and accessing an initialized |OC database.
This chapter is divided into the following sections:

 Database related include files. All of interest are listed and those of general interest are discussed briefly.

* Runtime database access overview.

* Description of each runtime database access routine.

* Runtime modification of link fields.

» Lock Set Routines

* Database to Channel Access Routines

» Old Database Access. Thisisthe interface still used by Channel Access and thus by Channel Access clients.

15.2 Database I nclude Files

Directory base/ i ncl ude contains anumber of database related include files. Of interest to this chapter are:

» dbDefs.h: Miscellaneous database related definitions
» dbFIdTypes.h: Field type definitions

» dbAccess.h: Runtime database access definitions.

* link.h: Definitionsfor link fields.

15.2.1 dbDefs.h

Thisfile contains a number of database related definitions. The most important are:

« PVYNAME_SZ: The number of characters alowed in the record name.
* MAX_STRING_SIZE: The maximum string size for string fields or menu choices.
e DB_MAX_CHOICES: The maximum number of choicesfor achoicefield.

15.2.2 doFIdTypes.h

This file defines the possible field types. A field'stype is perhaps its most important attribute. Changing the possible field
typesis afundamental change to the I0C software, because many 10C software components are aware of the field types.

Thefield types are:

* DBF_STRING: 40 character ASCI| string
 DBF_CHAR: Signed character

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 213

Chapter 15: Runtime Database Access
Database Include Files

 DBF_UCHAR: Unsigned character

» DBF_SHORT: Short integer

» DBF_USHORT: Unsigned short integer
« DBF_LONG: Long integer

* DBF_ULONG: Unsigned long integer
» DBF_FLOAT: Floating point number

» DBF_DOUBLE: Double precision float
 DBF_ENUM: Anenumerated field
 DBF_MENU: A menu choicefield

« DBF_DEVICE: A device choicefield

e DBF_INLINK: Input Link
 DBF_OUTLINK: Output Link
 DBF_FWDLINK: Forward Link

» DBF_NOACCESS: A privatefield for use by record access routines

A field of type DBF_STRI NG ..., DBF_DOUBLE can be a scalar or an array. A DBF_STRI NG field contains a NULL
terminated ascii string. Thefield types DBF_CHAR, ..., DBF_DOUBLE correspond to the standard C data types.

DBF_ENUMis used for enumerated items, which is analogous to the C language enumeration. An example of an enum
field isfield VAL of amulti bit binary record.

The field types DBF_ENUM DBF_MENU, and DBF_DEVI CE all have an associated set of ASCII strings defining the
choices. For a DBF_ENUM the record support module supplies values and thus are not available for static database access.
The database access routines | ocate the choice strings for the other types.

DBF_| NLI NK and DBF_QUTLI NK specify link fields. A link field can refer to asignal located in a hardware module, to a
field located in a database record in the same |OC, or to afield located in arecord in another IOC. A DBF_FWDLI NK can
only refer to arecord in the same |OC. Link fields are described in alater chapter.

DBF_I NLI NK (input), DBF_OUTLI NK (output), and DBF_FWDLI NK (forward) specify that the field is alink structure as
defined in | i nk. h. There are three classes of links:

1. Constant - The value associated with the field is a floating point value initialized with a constant value. This is
somewhat of a misnomer because constant link fields can be modified viadbPut Fi el d or dbPut Li nk.

2. Hardwarelinks - Thelink contains a data structure which describes asignal connected to a particular hardware bus.
Seel i nk. h for adescription of the bus types currently supported.

3. Process Variable Links - Thisis one of three types:
a. PV_LINK: The process variable name.
b. DB_LINK: A reference to a process variable in the same |OC.
c. CA_LINK: A referenceto avariable located in another |OC.

DCT always creates a PV_LI NK. When the I1OC is initialized each PV_LI NK is converted either to aDB_LI NK or a
CA LINK

DBF_NQACCESS fields are for private use by record processing routines.

15.2.3 dbAccess.h

Thisfile isthe interface definition for the run time database access library, i.e. for the routines described in this chapter.
An important structure defined in this header file is DBADDR

typedef struct dbAddr{
struct dbCommon *precord;/* address of record*/

214 EPICS Application Developer’'s Guide 1/5/09

Chapter 15: Runtime Database Access
Runtime Database Access Overview

voi d *pfiel d; /* address of field*/

voi d *pf | dDes; /* address of struct fldDes*/

voi d *asPvt ; /* Access Security Private*/

| ong no_el ements; /* nunber of elenments (arrays)*/

short field type; /* type of database field*/

short field size; /* size (bytes) of the field*/

short speci al ; /* special processing*/

short dbr _field_type; /*optiml database request type*/
} DBADDR,;

 precord: Address of record. Note that its type is a pointer to a structure defining the fields common to all record
types. The common fields appear at the beginning of each record. A record support module can cast pr ecor d to
point to the specific record type.

« pfield: Address of the field within the record. Note that pf i el d provides direct access to the data value.

 pfldDes: This points to a structure containing all details concerning the field. See Chapter “Database Structures’
for details.

 asPvt: A field used by access security.

* no_elements:. A string or numeric field can be either a scalar or an array. For scalar fieldsno_el ermrent s has the
value 1. For array fields it is the maximum number of elements that can be stored in the array.

« field_type: Field type.

» field_size: Size of one element of the field.

 gpecial: Some fields require special processing. This specifies the type. Special processing is described later in this
manual.

 dbr_field_type: This specifies the optimal database request type for thisfield, i.e. the request type that will require
the least CPU overhead.

NOTE: pfi el d, no_el ements,field_type,field_size,special,anddbr_field_type canall be set by
record support (cvt _dbaddr). Thusfi el d_type, fi el d_si ze, and speci al can differ from that specified by
pf | dDes.

15.2.4link.h
This header file describes the various types of link fields supported by EPICS.

15.3 Runtime Database Access Overview

With the exception of record and device support, all accessto the database isviathe channel or database access routines.
Even record support routines access other records only via database or channel access. Channel Access, in turn, accesses
the database via database access.

Perhaps the easiest way to describe the database access layer is to list and briefly describe the set of routines that
constitute database access. This provides agood look at the facilities provided by the database.

Before describing database access, one caution must be mentioned. The only way to communicate with an |OC database
from outside the |OC is via Channel Access. In addition, any special purpose software, i.e. any software not described in
this document, should communicate with the database via Channel Access, not database access, even if it resides in the
same |OC as the database. Since Channel Access provides network independent access to a database, it must ultimately

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 215

Chapter 15: Runtime Database Access
Runtime Database Access Overview

call database access routines. The database accessinterface was changed in 1991, but Channel Access was never changed.
Instead a module was written which translates old style database access calls to new. This interface between the old and
new style database access callsis discussed in the last section of this chapter.

The database access routines are:
* dbNameToAddr: Locate a database variable.

» dbGetField: Get values associated with a database variable.

» dbGetLink: Get value of field referenced by database link (Macro)

» dbGetLinkValue: Get value of field referenced by database link (Subroutine)
» dbGet: Routine called by dbGet Li nkVal ue and dbGet Fi el d

» dbPutField: Change the value of a database variable.

» dbPutLink: Change value referenced by database link (Macro)

» dbPutLinkValue: Change value referenced by database link (Subroutine)
 dbPut: Routine called by dbPut xxx functions.

* putNotifylnit: Initialize "struct putNotify"
 putNotifyCleanup: Cleanup "struct putNotify"

» dbPutNotify: A database put with notification on completion
» dbNotifyCancel: Cancel dbPut Not i fy

» dbNotifyAdd: Add anew record for to notify set.

» dbNotifyCompletion: Announce that put notify is complete.

 dbBuffer Size: Determine number of bytesin request buffer.
» dbValueSize: Number of bytesfor avalue field.

» dbGetRset: Get pointer to Record Support Entry Table
 dblsValueField: Isthisfield the VAL field.

» dbGetFieldlndex: Get field index. Thefirst field in arecord hasindex O.
» dbGetNelement: Get number of elementsin the field

» dblsLinkConnected: Isthelink field connected.

» dbGetPdbAddrFromLink: Get address of DBADDR.

» dbGetLinkDBFtype: Get field type of link.

» dbGetControlLimits: Get Control Limits.

» dbGetGraphicLimits: Get Graphic Limits.

o dbGetAlarmLimits: Get Alarm Limits

» dbGetPrecision: Get Precision

» dbGetUnits: Get Units

» dbGetNelements: Get Number of Elements

* dbGetSevr: Get Severity

» dbGetTimeStamp: Get Time Stamp

» dbPutAttribute Give avalueto arecord attribute.

» dbScanPassive: Process record if it is passive.
» dbScanLink: Process record referenced by link if it is passive.
* dbProcess: Process Record

216 EPICS Application Developer’'s Guide 1/5/09

Chapter 15: Runtime Database Access
Runtime Database Access Overview

» dbScanFwdLink: Scan aforward link.

15.3.1 Database Request Types and Options

Before describing database access structures, it is necessary to describe database request types and request options. When
dbPut Fi el d or dbGet Fi el d are called one of the arguments is a database request type. This argument has one of the
following values:

* DBR_STRING: VaueisaNULL terminated string

« DBR_CHAR: Vaueisasigned char

» DBR_UCHAR: Vaueisan unsigned char

 DBR_SHORT: Vaueisashort integer

« DBR_USHORT: Vaueis an unsigned short integer

 DBR_LONG: Valueisalong integer

 DBR_ULONG: Vaueisan unsigned long integer

* DBR_FLOAT: Valueis an |EEE floating point value

» DBR_DOUBLE: Vaueisan |EEE double precision floating point value
« DBR_ENUM: Valueis ashort which isthe enum item

« DBR_PUT_ACKT: Vaueisan unsigned short for setting the ACKT.
 DBR_PUT_ACKS: Valueis an unsigned short for global aarm acknowledgment.

The request types DBR_STRI NG,..., DBR_DOUBLE correspond exactly to valid data types for database fields. DBR_ENUM
corresponds to database fields that represent a set of choices or options. In particular it corresponds to the fields types
DBF_ENUM DBF_DEVI CE, and DBF_MENU. The complete set of database field types are defined in dbFI dTypes. h.
DBR_PUT_ACKT and DBR_PUT_ACKS are used to perform global aarm acknowledgment.

dbGet Fi el d also accepts argument options which isamask containing a bit for each additional type of information the
caller desires. The complete set of optionsis:

* DBR_STATUS: returnsthe alarm status and severity
 DBR_UNITS: returns a string specifying the engineering units
» DBR_PRECISION: returns along integer specifying floating point precision.
* DBR_TIME: returnsthetime

« DBR_ENUM_STRS: returnsan array of strings

*» DBR_GR_LONG: returnsgraphicsinfo aslong values

» DBR_GR _DOUBLE: returns graphicsinfo as double values

* DBR_CTRL_LONG: returns control info aslong values

« DBR_CTRL_DOUBLE: returns control info as double values
» DBR_AL_LONG: returnsaarm info aslong values

« DBR_AL _DOUBLE: returnsalarm info as double values

15.3.2 Options
Example

ThefiledbAccess. h contains macros for using options. A brief example should show how they are used. The following
example defines a buffer to accept an array of up to ten float values. In addition it contains fields for options
DBR_STATUS and DBR_TI ME.

struct buffer {
DBRst at us

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 217

Chapter 15: Runtime Database Access
Database Access Routines

DBRt i me
float val ue[10];
} buffer;

The associated dbCet Fi el d call is:
| ong options, nunber _el enent s, st at us;
options = DBR_STATUS | DBR_TI ME;

nunber el ements = 10;
status = dbGCet Fi el d(paddr, DBR_FLQOAT, &buf f er, &opt i ons, &unber _el enent s) ;

Consult dbAccess. h for acomplete list of macros.

Structure dbAddr contains afield dbr _fi el d_t ype. Thisfield is the database request type that most closely matches
the database field type. Using this request type will put the smallest load on the IOC.

Channel Access provides routines similar to dbCet Fi el d, and dbPut Fi el d. It provides remote access to
dbGet Fi el d, dbPut Fi el d, and to the database monitors described below.

15.3.3 ACKT and ACKS

The request types DBR_PUT _ACKT and DBR_PUT _ACKS are used for global alarm acknowledgment. The alarm handler
uses these requests. For each of these types the user (normally channel access) passes an unsigned short value. This value
represents:

DBR_PUT_ACKT - Do transient alarms have to be acknowledged? (0,1) means (no, yes).

DBR_PUT_ACKS - The highest alarm severity to acknowledge. If the current alarm severity is less then or equal to this
value the alarm is acknowledged.

15.4 Database Access Routines

15.4.1 dbNameToAddr

L ocate a process variable, format:

| ong dbNanmeToAddr (
char *pname, /*ptr to process variable nane */
struct dbAddr *paddr);

The most important goal of database access can be stated simply: Provide quick access to database records and fields
within records. The basic rules are:

« Cal dbNanmeToAddr once and only once for each field to be accessed.
» Read field valuesviadbGet Fi el d and write valuesviadbPut Fi el d.

The routines described in this subsection are used by channel access, sequence programs, etc. Record processing routines,
however, use the routines described in the next section rather then dbCGet Fi el d and dbPut Fi el d.

Given a process variable name, this routine locates the process variable and fills in the fields of structure dbAddr. The
format for a process variable nameis:

“<record_nane>. <fi el d_nanme>"

218 EPICS Application Developer’'s Guide 1/5/09

Chapter 15: Runtime Database Access
Database Access Routines

For example the value field of arecord with record name sanpl e_nane is:
“sanpl e_nane. VAL".
The record name is case sensitive. Field names always consist of all upper case letters.

dbNaneToAddr locates arecord via a process variable directory (PVD). It fills in a structure (dbAddr) describing the
field. dbAddr contains the address of the record and also the field. Thus other routines can locate the record and field
without a search. Although the PVD allows the record to be located via a hash algorithm and the field within arecord via
a binary search, it still takes about 80 microseconds (25MHz 68040) to located a process variable. Once located the
dbAddr structure allows the process variable to be accessed directly.

15.4.2 Get Routines

15.4.2.1 dbGetField
Get values associated with a process variable, format:

| ong dbGet Fi el d(
struct dbAddr *paddr,
short dbrType, [/* DBR xxx */
voi d *pbuffer, /[/*addr of returned data */
| ong *options, [/*addr of options */
| ong *nRequest, /*addr of nunber of elenents */
voi d *pfl); [/*used by nonitor routines */

Thus routine locks, calls dbGet , and unlocks.

15.4.2.2 dbGetLink and dbGetLinkValue
Get value from the field referenced by a database link, format:

[ong dbGCet Li nk(
struct db_link *pdbLink,/*addr of database |ink*/
short dbrType,/* DBR_Xxx*/
void *pbuffer,/*addr of returned data*/
long *options,/*addr of options*/
long *nRequest);/*addr of numnber of elenents desired*/

NOTES:
1) options can be NULL if no options are desired.
2) nRequest can be NULL for a scal ar.

dbGet Li nk is actually a macro that calls dbGet Li nkVal ue. The macro skips the call for constant links. User code
should never call dbGet Li nkVal ue.

Thisroutineis called by database access itself and by record support and/or device support routinesin order to get values
for input links. The value can be obtained directly from other records or via a channel access client. This routine honors
the link options (process and maximize severity). In addition it has code that optimizes the case of no options and scalar.

15.4.2.3 dbGet

Get values associated with a process variable, format:

l ong dbGet (
struct dbAddr*paddr,
short dbrType, /* DBR _xxx*/

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 219

Chapter 15: Runtime Database Access
Database Access Routines

void *pbuffer,/*addr of returned data

long *options,/*addr of options*/

l ong *nRequest,/*addr of nunber of el enents*/
void *pfl); /*used by nonitor routines*/

Thus routine retrieves the data referenced by paddr and convertsit to the format specified by dbr Type.

"opt i ons” is aread/write field. Upon entry to dbGet , opt i ons specifies the desired options. When dbGet Fi el d
returns, opt i ons specifies the options actually honored. If an option is not honored, the corresponding fields in buffer
arefilled with zeros.

"nRequest " isalso aread/write field. Upon entry to dbGet it specifies the maximum number of data elementsthe caller
iswilling to receive. When dbGet returns it equals the actual number of elements returned. It is permissible to request
zero elements. Thisis useful when only option datais desired.

"pf | " isafield used by the Channel Access monitor routines. All other users must set pf | =NULL.

dbGet callsone of anumber of conversion routines in order to convert data from the DBF types to the DBR types. It calls
record support routines for special cases such as arrays. For example, if the number of field elementsis greater then 1 and
record support routine get _ar ray_i nf o exists, thenit is called. It returns two values: the current number of valid field
elements and an offset. The number of valid elements may not match dbAddr.no_el erment s, which is really the
maximum number of elements allowed. The offset isfor use by records which implement circular buffers.

15.4.3 Put Routines

15.4.3.1 dbPutField
Change the value of a process variable, format:

| ong dbPut Fi el d(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
I ong nRequest);/*nunber of elenents to wite*/

This routine is responsible for accepting data in one of the DBR_xxx formats, converting it as necessary, and modifying
the database. Similar to dbGet Fi el d, this routine calls one of a number of conversion routines to do the actua
conversion and relies on record support routines to handle arrays and other special cases.

It should be noted that routine dbPut does most of the work. The actual algorithm for dbPut Fi el d is:

1. If the DI SPfield is TRUE then, unlessit isthe DI SP field itself which is being modified, the field is not written.
2. Therecord islocked.

3. dbPut iscalled.
4

. If thedbPut issuccessful then:
If thisis the PROCfield or if both of the following are TRUE: 1) the field is a process passive field, 2) the record is
passive.
a. If therecord is already active ask for the record to be reprocessed when it compl etes.
b. Call dbScanPassi ve after setting put f TRUE to show the process request came from dbPut Fi el d.

5. Therecord is unlocked.

15.4.3.2 dbPutLink and dbPutLinkValue
Change the value referenced by a database link, format:
[ong dbPut Li nk(

220 EPICS Application Developer’'s Guide 1/5/09

Chapter 15: Runtime Database Access
Database Access Routines

structdb_Iink *pdbLink,/*addr of database Iink*/
short dbrType, /* DBR_xxx*/

void *pbuffer,/*addr of data to wite*/

l ong nRequest);/*nunber of elenents to wite*/

dbPut Li nk is actually a macro that calls dbPut Li nkVal ue. The macro skips the call for constant links. User code
should never call dbPut Li nkVal ue.

Thisroutineis called by database access itself and by record support and/or device support routines in order to put values
into other database records via output links.

For Channel Accesslinksit callsdbCaPut Li nk.
For database links it performs the following functions:

1. CallsdbPut .
2. Implements maximize severity.

3. If thefield being referenced is PROC or if both of the following are true: 1) pr ocess_passi ve is TRUE and 2)
the record is passive then:
a If therecord is already active because of a dbPut Fi el d request then ask for the record to be reprocessed
when it compl etes.
b. otherwise call dbScanPassi ve.

15.4.3.3 dbPut
Put avalue to a database field, format:

[ong dbPut (
struct dbAddr *paddr,
short dbrType, /* DBR_Xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*nunber of elenents to wite*/

This routine is responsible for accepting data in one of the DBR_xxx formats, converting it as necessary, and modifying
the database. Similar to dbGet , this routine calls one of a number of conversion routines to do the actual conversion and
relies on record support routines to handle arrays and other special cases.

15.4.4 Put Notify Routines

dbPut Not i fy is a request to notify the caller when all records that are processed as a result of a put complete
processing. Complications occur because of record linking and asynchronous records. A put can cause an entire chain of
records to process. If any record is an asynchronous record then record compl etion means asynchronous compl etion.

The following rules are implemented:

1. The user code must allocate a putNotify control block and. Before calling dbPutNotify the user must set fields
paddr, pbuffer, nRequest, and dbrType. paddr is the value returned by doNameToAddr. The field userPvt is never
accessed by dbNotify and isfor the user.. If aputNotify isalready in use, i.e. adbPutNotify has been issued and the
userCallbach has not been called, it isillegal to issue a new dbPutNotify with the same putNotify control block.
Any such attempt will cause an assert failure.

2. The userCallback routine will be always be called unlessdbNot i f yCancel iscalled. The userCallback is called
when the dbPutNotify is complete. The user is then free to reuse or delete the putNotify control block. The user
supplied callback is called when all processing is complete or when an error is detected. If everything completes
synchronously the callback routine will be called BEFORE dbPut Not i fy returns.The userCallback is called
without anything locked

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 221

Chapter 15: Runtime Database Access
Database Access Routines

3. If the user calls dbNotifyCancel then the userCallback will NOT be called after dbNotifyCancel returns. It may get
called while dbNotifycancel is active. If it is active dbNotifyCancel will not return until userCallback completes.
Thus after dbNotifyCancel returns the user may reuse or delete the putNotify control block. The putNotify control
block MUST NOT be deleted by userCallback.

4. If another putNotify is already active on the record associated with the putNotify, the new putNotify is put on a
restart list and automatically restarted.

5. If the record associated with the putNotify is already active for some other reason, the putNotify takes ownership of
the record and starts the put request when the record completes processing.

6. In general aset of records may be processed as aresult of asingle dbPut Not i fy. If arecord in the set isfound to
be active, either because PACT istrue or because a putNotify already owns the record, then that record is not made
part of the set of records that must complete before the putNotify request compl etes.

15.4.4.1 putNotifylnit
Thisiscalled by ioclnit.
Format:

void putNotifylnit(void);

15.4.4.2 doPutNotify
Perform a database put and notify when record processing is compl ete.
Format:

voi d dbPut Noti fy(putNotify *pputnotify);
wher e

t ypedef enum {
put Not i f yCOK,
put Not i f yCancel ed,
put Not i f yErr or
put Not i f yPut Di sabl ed
} put Not i f ySt at us;

typedef struct putNotify{
/*The foll owi ng nust be set by the user*/

voi d (*userCal | back) (struct putNotify *);

struct dbAddr*paddr; /*dbAddr set by dbNameToAddr*/

voi d *pbuffer; / *address of data*/

| ong nRequest ; /[*nunmber of elements to be witten*/
short dbr Type; / *dat abase request type*/

voi d *usr Pvt ; /[*for private use of user*/

/*The following is status of request.Set by dbPutNotify*/
put Noti f ySt at us st at us;
/*fields private to database access*/
}put Noti fy;
The caller must allocate aput Not i f y structure and set the fields:

user Cal | back - Routine that is called upon conpletion
paddr - address of a dbAddr. Returned by dbNameToAddr.

222 EPICS Application Developer’'s Guide 1/5/09

Chapter 15: Runtime Database Access
Database Access Routines

pbuffer - address of data

nRequest - nunber of data el enents

dbr Type - dat abase request type

usrPvt - a void * field that caller can use as needed.

The status value in putNotify.status is one of

» putNotifyOK Success

» putNotifyCanceled User issued a dbNotifyCancel.

» putNotifyError Either doPut of dbProcess returned an error.

» putNotifyPutDisabled Puts have been disabled for the record.

The user callback is always called unless dbNot i f yCancel is called before the put notify competes. It may be called
while dbPutNotify or doNotifyCancel is active.
15.4.4.3 doNotifyCancel
Cancel an outstanding dbPut Not i f y.
Format:
voi d dbNotifyCancel (putNotify *pputnotify);
This cancels an active dbPut Not i f y.

15.4.4.4 doNotifyAdd
Thisroutineis called by database access itself. It should never be called by user code.

15.4.4.5 dbNotifyCompletion
Thisroutine is called by database access itself. It should never be called by user code.

15.4.5 Utility Routines

15.4.5.1 dbBufferSize
Determine the buffer sizefor adbCGet Fi el d request, format:

| ong dbBufferSize(
short dbrType, /* DBR_xxx*/
long options, /* options mask*/
l ong nRequest);/* nunber of el ements*/

This routine returns the number of bytesthat will be returned to dbGet Fi el d if the request type, options, and number of
elements are specified as given to dbBuf f er Si ze. Thusit can be used to allocate storage for buffers.

NOTE: This should become a Channel Access routine

15.4.5.2 dbValueSize
Determine the size avaue field, format:
dbVal ueSi ze(short dbrType);/* DBR xxx*/
This routine returns the number of bytes for each element of type dbr Type.
NOTE: This should become a Channel Access routine

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 223

Chapter 15: Runtime Database Access
Database Access Routines

15.4.5.3 dbGetRset
Get address of arecord support entry table.
Format:
struct rset *dbGet Rset (DBADDR *paddr);
This routine returns the address of the record support entry table for the record referenced by the DBADDR.

15.4.5.4 dblsvValueField
Isthisfield the VAL field of the record?
Format:
i nt dbl sVal ueFi el d(struct dbFl dDes *pdbFI dDes);

Thisisthe routine that makesthe get _val ue record support routine obsolete.

15.4.5.5 dbGetFieldindex
Get field index.
Format:

i nt dbCet Fi el dl ndex(DBADDR * paddr) ;
Record support routines such as speci al and cvt _dbaddr need to know which field the DBADDR references. The
include file describing the record contains define statements for each field. dbGet Fi el dI ndex returns the index that
can be matched against the define statements (normally via a switch statement).
15.4.5.6 dbGetNelements
Get number of elementsin afield.
Format:

[ong dbGCet Nel ement s(struct |ink *plink,long *nel ements);

Thissets*nel erment s to the number of elementsin the field referenced by plink.

15.4.5.7 dblsLinkConnected
Isthelink connected.
Format:
i nt dbl sLi nkConnected(struct Iink *plink);
Thisroutine returns (TRUE, FALSE) if thelink (is, is not) connected.

15.4.5.8 dbGetPdbAddrFromLink
Get address of DBADDR from link.
Format:
DBADDR *dbGet PdbAddr Fr onli nk(struct |ink *plink);
This macro returns the address of the DBADDR for a database link and NULL for all other link types.

224 EPICS Application Developer’'s Guide 1/5/09

Chapter 15: Runtime Database Access
Database Access Routines

15.4.5.9 dbGetLinkDBFtype
Get field type of alink.
Format:
i nt dbCet Li nkDBFt ype(struct Iink *plink);

15.4.5.10 dbGetControlLimits
Get Control Limits for link.
Format:
| ong dbGet Control Limts(struct |ink *plink, double *Iow, double *high);

15.4.5.11 dbGetGraphicLimits
Get Graphic Limitsfor link.
Format:

| ong dbGet GraphicLimts(struct |ink *plink, double *Iow, double *high);

15.4.5.12 dbGetAlarmLimits
Get Alarm Limitsfor link.
Format:

[ong dbGet Al arnLimits(struct |ink *plink,

doubl e I ol o, doubl e *I ow, doubl e *hi gh, doubl e hihi);

15.4.5.13 dbGetPrecision
Get Precision for link.
Format:

| ong dbGet Precision(struct |ink *plink,short *precision);

15.4.5.14 dbGetUnits
Get Unitsfor link.
Format:

l ong dbGetUnits(struct |link *plink,char *units,int unitsSize);

15.4.5.15 dbGetSevr
Get Severity for link.
Format:
[ong dbGet Sevr(struct link *plink,short *sevr);

15.4.5.16 dbGetTimeStamp
Get Time Stamp for record containing link.
Format:
| ong dbGet Ti meStanmp(struct |ink *plink, TS STAMP *pst anp);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 225

Chapter 15: Runtime Database Access
Runtime Link Modification

15.4.6 Attribute Routine

15.4.6.1 dbPutAttribute
Give avalue to arecord attribute.

| ong dbPut Attribute(char *recordTypenane,
char *name, char*val ue) ;

This sets the record attribute nane for record typer ecor dTypenane toval ue. For example the following would set
the version for the ai record.

dbPut Attribute("ai","VERS", "V800. 6. 95")

15.4.7 Process Routines

15.4.7.1 dbScanPassive
dbScanLink
dbScanFwdLink

Processrecord if it is passive, format:

| ong dbScanPassi ve(

struct dbCommon *pfrom

struct dbCommmon *pto); /* addr of record*/
| ong dbScanLi nk(

struct dbCommon *pfrom

struct dbCommon *pto);
voi d dbScanFwdLi nk(struct |ink *plink);

dbScanPassi ve and dbScanLi nk are given the record requesting the scan, which may be NULL, and the record to
be processed. If the record is passive and pact =FALSE then dbPr ocess iscaled. Note that these routine are called by
dbGet Li nk, dbPut Fi el d, and by r ecGbl FwdLi nk.

dbScanFwdLi nk isgiven alink that must be a forward link field. It follows the rules for scanning aforward link. That
isfor DB_LINKsit cals dbScanPassive and for CA_LINKS it does a dbCaPutLink if the PROC field of record is being
addressed.
15.4.7.2 dbProcess
Request that a database record be processed, format:

| ong dbProcess(struct dbConmom *precord);

Request that record be processed. Record processing is described in detail bel ow.

15.5 Runtime Link Modification

Database links can be changed at run time but only via a channel access client, i.e. via callsto dbPut Fi el d but not to
dbPut Li nk. Thefollowing restrictions apply:
» Only DBR_STRI NGis allowed.

« If alink is being changed to a different hardware link type then the DTYP field must be modified before the link
field.

226 EPICS Application Developer’'s Guide 1/5/09

Chapter 15: Runtime Database Access
Channel Access Monitors

» The syntax for the string field is exactly the same as described for link fieldsin chapter “ Database Definition”

NOTE: For this release modification to/from hardware links has not been tested. In addition modification to record/device
support will be needed in order to properly support dynamic modification of hardware links.

15.6 Channel Access Monitors

There are facilities within the Channel Access communication infrastructure which allow the value of a process variable
to be monitored by a channel access client. It is aresponsibility of record support (and do common) to notify the channel
access server when the internal state of a process variable has been modified. State changes can include changes in the
value of a process variable and also changes in the alarm state of a process variable. The routine “db_post_events()” is
called to inform the channel access server that a process variable state change event has occurred.

#i ncl ude <caevent nask. h>

int db_post_events(void *precord, void *pfield,
unsi gned intsel ect);

The first argument, “precord”, should be passed a pointer to the record which is posting the event(s). The second
argument, “pfield”, should be passed a pointer to the field in the record that contains the process variable that has been
modified. The third argument, “select”, should be passed an event select mask. This mask can be any logical or
combination of { DBE_VALUE, DBE_LOG, DBE_ALARM}. A description of the purpose of each flag in the event select
mask follows.

» DBE_VALUE Thisindicates that a significant change in the process variable's value has occurred. A significant
change is often determined by the magnitude of the monitor “dead band” field in the record.

» DBE_LOG Thisindicates that a change in the process variable's value significant to archival clients has occurred.
A significant change to archival clientsis often determined by the magnitude of the archive “dead band” field in the
record.

» DBE_ALARM Thisindicates that a change in the process variable’s alarm state has occurred.

The function “db_post_events()” returns O if it is successful and -1 if it fails. It appears to be common practice within
EPICS record support to ignore the status from “db_post_events()”. At this time “db_post_events()” always returns 0
(success). because so many records at this time depend on this behavior it is unlikely that it will be changed in the future.

The function “db_post_events()” is written so that record support will never be blocked attempting to post an event
because a slow client is not able to process events fast enough. Each call to “db_post_events()” causes the current value,
alarm status, and time stamp for the field to be copied into aring buffer. The thread calling “db_post_events()” will not be
delayed by any network or memory alocation overhead. A lower priority thread in the server is responsible for
transferring the events in the event queue to the channel access clients that may be monitoring the process variable.

Currently, when an event is posted for aDBF_STRING field or afield containing array datathe valueis NOT saved in the
ring buffer and the client will receive whatever value happens to bein the field when the lower priority thread transfers the
event to the client. This behavior may be improved in the future.

15.7 Lock Set Routines

User code only callsdbScanLock and dbScanUnl ock. All other routines are called by i ocCor e.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 227

Chapter 15: Runtime Database Access
Lock Set Routines

15.7.0.1 dbScanL ock
Lock alock set:
l ong void dbScanLock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs.

15.7.0.2 dbScanUnlock
Unlock alock set:
| ong voi d dbScanUnl ock(struct dbConmon *precord);

Lock the lock set to which the specified record belongs

15.7.0.3 dbL ockGetL ockld
Get lock set id:
| ong dbLockGet Lockl d(struct dbComon *precord);

Each lock set is assigned a unique ID. This routine retrieves it. Thisis most useful to determine if two records are in the
same lock set.

15.7.0.4 dbL ockInitRecords
Determine lock sets for each record in database.

voi d dbLockl nit Recor ds(dbBase *pdbbase);
Cdledbyioclnit.

15.7.0.5 dbL ockSetM erge
Merge records into same lock set.

voi d dbLockSet Merge(struct dbComron *pfirst,
struct dbCommon *psecond);

If specified records are not in same lock set the lock sets are merged. Called by dbL ocklnitRecords and aso when links
are modified by dbPut Fi el d.

15.7.0.6 dbL ockSetSplitS

Recompute lock sets for given lock set
voi d dbLockSet Split(struct dbCommon *psource);
Thisis caled when dbPut Fi el d modifyslinks.

15.7.0.7 dbL ockSetGbl L ock
Global lock for modifying links.
voi d dbLockSet Gol Lock(voi d);

Only onetask at atime can modify link fields. This routine provides a global lock to prevent conflicts.

15.7.0.8 dbL ockSetGblUnlock
Unlock the global lock.

228 EPICS Application Developer’'s Guide 1/5/09

Chapter 15: Runtime Database Access
Channel Access Database Links

voi d dbLockSet Gol Unl ock(voi d);

15.7.0.9 dbL ockSetRecordL ock
If record is not already scan locked lock it.
voi d dbLockSet Recor dLock(struct dbConmon *precord);

15.8 Channel Access Database Links

The routines described here are used to create and manipulate Channel Access connections from database input or output
links. At 10C initialization an attempt is made to convert all process variable links to database links. For any link that
fals, it is assumed that the link is a Channel Access link, i.e. alink to a process variable defined in another IOC. The
routines described here are used to manage these links. User code never needs to call these routines. They are
automatically called by ioclnit and database access.

Atioclnit timeatask dbCaLi nk is spawned. This task is a channel access client that issues channel access requests
for all channel access links in the database. For each link a channel access search request is issued. When the search
succeeds a channel access monitor is established. The monitor is issued specifying ca_field type and
ca_el enment _count . A buffer is also alocated to hold monitor return data as well as severity. When dbCaGet Li nk is
caled data is taken from the buffer, converted if necessary, and placed in the location specified by the pbuf f er
argument.

When the first dbCaPut Li nk is called for a link an output buffer is alocated, again using ca _fi el d_t ype and
ca_el enent _count . The data specified by the pbuffer argument is converted and stored in the buffer. A request isthen
made to dbCali nk task toissueaca_put . Subsegquent callsto dbCaPut Li nk reuse the same buffer.

15.8.1 Basic Routines
Except for dbCaPutLinkCallback, these routines are normally only called by database access, i.e. they are not called by

record support modules.

15.8.1.1 dbCaLinklInit

Cdled by i ocl ni t toinitialize the dbCa library
voi d dbCaLi nklnit (void);

15.8.1.2 dbCaAddLink
Add anew channel access link
voi d dbCaAddLi nk(struct Iink *plink);

15.8.1.3 dbCaAddLinkCallback

voi d dbCaAddLi nkCal | back(struct |ink *plink,
dbCaCal | back connect, dbCaCal | back nonitor,void *userPvt);

connect will be called whenever the link connects or disconnects. noni t or will be called whenever a monitor event
occurs. connect and or moni t or may be null.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 229

Chapter 15: Runtime Database Access
Channel Access Database Links

15.8.1.4 dbCaRemoveLink
Remove channel access link.
voi d dbCaRenovelLi nk(struct |ink *plink);

15.8.1.5 dbCaGetLink
Get link value
I ong dbCaGet Li nk(struct link *plink,short dbrType,
voi d *pbuffer,unsigned short *psevr,long *nRequest);
15.8.1.6 dbCaPutLink
Put link value
| ong dbCaPut Li nk(struct |ink *plink,short dbrType,
voi d *buffering nRequest);
15.8.1.7 dbCaPutLinkCallback
Thisis meant for use by device or record support that wants a put to complete before completing record processing.

| ong dbCaPut Li nkCal | back(struct Iink *plink,short dbrType,
const void *pbuffer,long nRequest, dbCaPut Cal | back cal | back);

<base>/src/dev/devSoft/devA oSoftCallback.c provides an example of how to use thisfinction. It contains:

static long wite_ao(aoRecord *pao)

{
struct link *plink = &pao->out;
| ong st at us;
i f(pao->pact) return(0);
i f(plink->type!=CA LINK) {
status = dbPutLi nk(&pao- >out, DBR_DOUBLE, &pao- >oval , 1) ;
return(status);
}
status = dbCaPut Li nkCal | back(pl i nk, DBR_DOUBLE, &pao- >oval , 1,
(dbCacCal | back) dbCaCal | backPr ocess, pli nk);
if(status) {
rec@l Set Sevr (pao, LI NK_ALARM | NVALI D_ALARM) ;
return(status);
}
pao- >pact = TRUE;
return(0);
}

What happensis the following:

When the record is processed write_ao is called with pact=0.

If thelink isnot a CA_LINK it just calls dbPutLink. It leaves pact 0. Thus record support completes.

If itisaCA_LINK it calls dbCaPutLinkCallback and sets pact true. Thus record is asynchronous.
If the record is asynchrnous then sometime later dbCaCallbackProcess is called. It cals the process routine of
record support, which calls write_ao with pact true. write_ao just returns success. Record support then completes
the second phase of record processing.

230 EPICS Application Developer’'s Guide 1/5/09

Chapter 15: Runtime Database Access
Channel Access Database Links

There is a possibility that the link is changed between the two phases of record processing. If this happens the user
supplied callback will still get called exactly once but the link may have been modified.

15.8.2 Attributes of Link

The routines in this section are meant for use by device support to find out information about link fields. They must be
called with dbScanL ock held, i.e. normally they are called by the read or write method provided by device support.
15.8.2.1 dbCal sLinkConnected
Is Channel Connected

i nt dbCal sLi nkConnected(struct Iink *plink)
Thisroutine returns (TRUE, FALSE) if thelink (is, is not) connected.

15.8.2.2 dbCaGetNelements
Get Number of Elements
| ong dbCaGet Nel enent s(struct |ink *plink,long *nel enents);

This call, which returns an error if the link is not connected, sets the native number of el ements.

15.8.2.3 dbCaGetSevr
Get Alarm Severity
| ong dbCaGet Sevr(struct |ink *plink,short *severity);

This call, which returns an error if the link is not connected, setsthe alarm severity.

15.8.2.4 dbCaGetTimeStamp
Get Time Stamp
| ong dbCaCet Ti meSt anp(struct |ink *plink, TS STAMP *pstanp));
This call, which returns an error if the link is not connected, sets pstamp to the time obtained by the last CA monitor.

15.8.2.5 dbCaGetL inkDBFtype
Get link type
i nt dbCaCet Li nkDBFt ype(struct |ink *plink);

This call, which returns an error if the link is not connected, returns the field type.

15.8.2.6 dbCaGetAttributes
Get Attributes

| ong dbCaGet Attributes(struct link *plink,
void (*call back) (void *usrPvt),void *usrPvt);

When ever dbCa receives a connection it issues a CA get request to obtain the control, graphic, and alarm limits and to
obtain the precision and units. By calling dbCaGetAttributes the caller can be notified when this get compl etes.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 231

Chapter 15: Runtime Database Access
Channel Access Database Links

15.8.2.7 dbCaGetControlLimits
Get Control Limits
| ong dbCaGet Control Li mits(struct |ink *plink,double *I ow, double *high);

This call returns an error if the link is not connected or if the CA get request for limits, etc has not completed. If it returns
successit has set the control limits.

15.8.2.8 dbCaGetGraphicLimits
Get graphic Limits
| ong dbCaCGet GraphicLimts(struct |ink *plink,double *Iow, double *high);
Thiscall returns an error if the link is not connected or if the CA get request for limits, etc has not completed. If it returns
successiit has set the graphic limits.
15.8.2.9 dbCaGetAlarmLimits
Get Alarm Limits

| ong dbCaCGet Al arnmlLi mits(struct |ink *plink,
doubl e *l1 ol o, double *low, double *high, double *hihi);

This call returns an error if the link is not connected or if the CA get request for limits, etc has not completed. If it returns
success it has set the alarm limits.
15.8.2.10 dbCaGetPrecision
Get Precision
[ong dbCaGet Preci sion(struct |ink *plink,short *precision);
This call returns an error if the link is not connected or if the CA get request for limits, etc has not completed. If it returns
success it has set the precision.
15.8.2.11 dbCaGetUnits
Get Units
I ong dbCaGet Units(struct link *plink,char *units,int unitsSize);

Thiscall returns an error if the link is not connected or if the CA get request for limits, etc has not completed. If it returns
success it has set the units.

232 EPICS Application Developer’'s Guide 1/5/09

Chapter 16: EPICS General Purpose Tasks

16.1 Overview
This chapter describes two sets of EPICS supplied general purpose tasks: 1) Callback, and 2) Task Watchdog.

Often when writing code for an 10C there is no obvious task under which to execute. A good example is completion code
for an asynchronous device support module. EPICS supplies the callback tasks for such code.

If an 10C tasks "crashes’ there is normally no one monitoring the vxWorks shell to detect the problem. EPICS provides a
task watchdog task which periodically checks the state of other tasks. If it finds that a monitored task has terminated or
suspended it issues an error message and can also call other routines which can take additional actions. For example a
subroutine record can arrange to be put into alarm if a monitored task crashes.

Since IOCs normally run autonomously, i.e. no one is monitoring the vxWorks shell, 10C code that issuespri nt f cals
generates errors messages that are never seen. In addition the vxWorks implementation of fprintf requires much more
stack space then pri nt f calls. Another problem with vxWorks is the | oghMsg facility. | ogMsg generates messages at
higher priority then all other tasks except the shell. EPICS solves all of these problems via an error message handling
facility. Code can call any of the routines er r Message, errPrintf, or errl ogPrintf. Any of these result in the
error message being generated by a separate low priority task. The calling task has to wait until the message is handled but
other tasks are not delayed. In addition the message can be sent to a system wide error message file.

16.2 General Purpose Callback Tasks

16.2.1 Overview

EPICS provides three genera purpose |OC callback tasks. The only difference between the tasks is scheduling priority:
Low, Medium, and High. The low priority task runs at a priority just higher than Channel Access, the medium at a priority
about equal to the median of the periodic scan tasks, and the high at a priority higher than the event scan task.The callback
tasks provide a service for any software component that needs a task under which to run. The callback tasks use the task
watchdog (described below). They use a rather generous stack and can thus be used for invoking record processing. For
example the 1/O event scanner uses the general purpose callback tasks.

The following steps must be taken in order to use the general purpose callback tasks:

1. Include callback definitions:

#i ncl ude <cal | back. h>

2. Provide storage for a structure that is a private structure for the callback tasks:

CALLBACK nycal | back;

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 233

Chapter 16: EPICS General Purpose Tasks
General Purpose Callback Tasks

It is permissible for thisto be part of alarger structure, e.g.
struct {
CALLBACK mycal | back;
\ Ce
3. Calls (actualy macros) to initialize fields in CALLBACK:
cal | backSet Cal | back(VO DFUNCPTR func, CALLBACK *pch);

This defines the caller’s callback routine. The first argument is the address of a function returning VO D. The
second argument is the address of the CALLBACK structure.

cal | backSetPriority(int, CALLBACK *pch);
The first argument is the priority, which can have one of the values: pri orityLow priorityMedi um or
priorityH gh. These values are defined in cal | back. h. The second argument is again the address of the
CALLBACK structure.

cal | backSet User (voi d *, CALLBACK *pcbh);
Thiscall isused to save avalue that can be retrieved via the macro:

cal | backGet User (voi d *, CALLBACK *pch);

If your callback function exists to process a single record inside calls to dbScanLock/dbScanUnl ock, you can
use this shortcut which provides the callback routine for you:

cal | backSet Process(CALLBACK *pcb, int prio, void *prec);

4. Whenever a callback request is desired just call one of the following:

cal | backRequest (CALLBACK *pcb);
cal | backRequest ProcessCal | back(CALLBACK *pcb, int prio, void *prec);

Either can be called from interrupt level code. The callback routine is passed a single argument, which is the same
argument that was passed to cal | backRequest, i.e, the address of the CALLBACK structure. The second
routine is a shortcut for calling first cal | backSet Process and then cal | backRequest . There are also
delayed versions of these routines available now, see below for details.

16.2.2 Syntax

The following calls are provided:

voi d cal | backlnit(void);

voi d cal | backSet Cal | back(voi d *pcal | backFuncti on,

CALLBACK *pcal | back);
void cal | backSetPriority(int priority, CALLBACK *pcal | back);
voi d cal | backSet User (voi d *user, CALLBACK *pcal | back);

234 EPICS Application Developer’'s Guide 1/5/09

Chapter 16: EPICS General Purpose Tasks
General Purpose Callback Tasks

voi d cal | backGet User (voi d *user, CALLBACK *pcal | back);
voi d cal | backSet Process(CALLBACK *pcal | back, int Priority, void *prec);

voi d cal | backRequest (CALLBACK *);
voi d cal | backRequest ProcessCal | back(CALLBACK *pCal | back

int Priority, void *prec);
voi d cal | backRequest Del ayed(CALLBACK *pCal | back, doubl e seconds);
voi d cal | backRequest ProcessCal | backDel ayed(

CALLBACK *pCal | back, int Priority, void *prec, double seconds);
voi d cal | backCancel Del ayed(CALLBACK *pcal | back) ;
i nt call backSet QueueSi ze(int size);

Notes:

» cal | backl nit is performed automatically when EPICS initializes and IOC. Thus user code never calls this
function.

» cal | backSet Cal | back, cal | backSet Priority, call backSet User, and cal | backGet User are
actually macros.

» Bothcal | backRequest and cal | backRequest ProcessCal | back can be caled from interrupt handler
routines.

» The delayed version of the cal | backRequest routines wait the specified amout of time before scheduling the
callback.

» cal | backCancel Del ayed can be used to cancel a delayed callback.

» cal | backRequest ProcessCal | back is designed for the completion phase of asynchronous record
processing. It issues the calls:

cal | backSet Cal | back(ProcessCal | back, pCall back);
cal | backSetPriority(Priority, pCallback);

cal | backSet User (pRec, pCall back);

cal | backRequest (pCal | back) ;

ProcessCal | back, which is designed for asynchronous device completion applications, consists of the
following code:

static void ProcessCal | back(CALLBACK *pCal | back)

{
dbConmon *pRec;

struct rset *prset;

cal | backGet User (pRec, pCall back);
prset = (struct rset *)pRec->rset;
dbScanLock(pRec);
(*prset->process) (pRec);

dbScanUnl ock(pRec) ;

16.2.3 Example

An example use of the callback tasks.

#i ncl ude <cal | back. h>

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 235

Chapter 16: EPICS General Purpose Tasks
General Purpose Callback Tasks

static structure {

char begi d[80] ;
CALLBACK cal | back;
char endi d[80] ;
}nyStruct;
voi d nyCal | back(CALLBACK *pcal | back)
{
struct myStruct *pnyStruct;
cal | backGet User (pnyStruct, pcal | back)
printf(”begi d=% endi d=%\n", &nySt ruct - >begi d[0] ,
&pnst ruct - >endi d[0]) ;
}
exanpl e(char *pbegi d, char*pendi d)
{
strcpy(&myStruct. begi d[0], pbegi d);
strcpy(&myStruct. endi d[0], pendi d);
cal | backSet Cal | back(nyCal | back, &ryStruct. cal | back);
cal | backSetPriority(priorityLow, &yStruct. call back);
cal | backSet User (&mryStruct, &myStruct . cal | back);
cal | backRequest (&nyStruct. cal | back) ;
}

The example can be tested by issuing the following command to the vxWorks shell:
exanpl e(” begin”, "end”)

This simple example shows how to use the callback tasks with your own structure that contains the CALLBACK structure
at an arbitrary location.

16.2.4 Callback Queue

The callback requests put the requests on a vxWorks ring buffer. Thus buffer is set by default to hold 2000 requests. This
value can bechanged by calling cal | backSet QueueSi ze beforei ncl ni t inthe startup file. The syntax is:

i nt cal |l backSet QueueSi ze(int size)

236 EPICS Application Developer’'s Guide 1/5/09

Chapter 16: EPICS General Purpose Tasks
Task Watchdog

16.3 Task Watchdog

EPICS provides a task that acts as a watchdog for other tasks. Any task can request to be watched, and most of the IOC
tasks do this. A status monitoring subsystem in the IOC can register to be notified about any changes that occur. The
watchdog task runs periodically and checks each task in its task list. If any task is suspended, an error message is
displayed and any notifications made. The task watchdog provides the following features:

1. Include module:

#i ncl ude <taskwd. h>

2. Request by atask to be monitored:
taskwdl nsert (epicsThreadld tid, TASKWDFUNC cal | back, VO D *usr);

This adds the task with the specified t i d to the list of tasks to be watched, and makes any requested notifications
that a new task has been registered. If ti d is given as zero, the epi csThr eadl d of the calling thread is used
instead. If cal | back isnot NULL and the task later becomes suspended, the callback routine will be called with
the single argument usr .

3. Remove task from list:
t askwdRemove(epi csThreadld tid);

This routine must be called before the monitored task exits. It makes any requested notifications and removes the
task from the list of tasks being watched. If ti d is given as zero, the epi csThr eadl d of the caling thread is
used instead.

4. Request to be notified of changes:

typedef struct {
void (*insert)(void *usr, epicsThreadld tid);
void (*notify)(void *usr, epicsThreadld tid, int suspended);
void (*renmove)(void *usr, epicsThreadld tid);

} taskwdMbnitor;

t askwdMoni t or Add(const taskwdMonitor *funcs, void *usr);
This call provides a set of callbacks for the task watchdog to call when atask is registered or removed or when any
task gets suspended. The usr pointer given at registration is passed to the callback routine along with thet i d of
the thread the notification is about. In many cases the i nsert and r enove calbacks will be called from the
context of the thread itself, although this is not guaranteed (the registration could be made by a parent thread for

instance). Thenot i fy callback also indicates whether the task went into or out of suspension; it is called in both
cases, unlike the callbacks registered witht askwdl nsert andt askwdAnyl nsert .

5. Rescind notification request:
t askwdMoni t or Del (const taskwdMonitor *funcs, void *usr);

This call removes a previoudly registered notification. Both f uncs and usr must match the values given to
t askwdMbni t or Add when originally registered.

6. Print areport:

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 237

Chapter 16: EPICS General Purpose Tasks
Task Watchdog

t askwdShow(i nt | evel);

If | evel iszero, the number of tasks and monitors registered is displayed. For higher values the registered task
names and their current states are also shown in tabular form.

7. Thefollowing routines are provided for backwards compatibility purposes, but are now deprecated:
t askwdAnyl nsert (void *key, TASKWDANYFUNC cal | back, VO D *usr);
The callback routine will be called whenever any of the tasks being monitored by the task watchdog become
suspended. key must have a unique value because the task watchdog system uses this value to determine which
entry to remove when t askwdAnyRenove is called.

t askwdAnyRenove(voi d *key);

key isthe same value that was passed tot askwdAnyl nsert .

238 EPICS Application Developer’'s Guide 1/5/09

Chapter 17: Database Scanning

17.1 Overview

Database scanning is the mechanism for deciding when to process arecord. Five types of scanning are possible:

» Periodic: A record can be processed periodically. A number of time intervals are supported.

» Event: Event scanning is based on the posting of an event by another component of the software viaa call to the
routine post _event .

« |/O Event: The original meaning of this scan type is a request for record processing as a result of a hardware
interrupt. The mechanism supports hardware interrupts as well as software generated events.

» Passive: Passive records are processed only viarequests to dbScanPassi ve. This happens when database links
(Forward, Input, or Output), which have been declared " Process Passive” are accessed during record processing. It
can also happen as a result of dbPut Fi el d being caled (This normally results from a Channel Access put
reguest).

» Scan Once: In order to provide for caching puts, The scanning system provides a routine scanOnce which
arranges for arecord to be processed one time.

This chapter explains database scanning in increasing order of detail. It first explains database fields involved with
scanning. It next discusses the interface to the scanning system. The last section gives a brief overview of how the
scanners are implemented.

17.2 Scan Related Database Fields

The following fields are normally defined via DCT. It should be noted, however, that it is quite permissible to change any
of the scan related fields of arecord dynamically. For example, a display manager screen could tie a menu control to the
SCANfield of arecord and allow the operator to dynamically change the scan mechanism.

17.2.1 SCAN

Thisfield, which specifies the scan mechanism, has an associated menu of the following form:

Passive: Passively scanned.

Event: Event Scanned. The field EVNT specifies event number
I/O Event scanned.

10 Second: Periodically scanned - Every 10 seconds

.1 Second: Periodically scanned - Every .1 seconds

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 239

Chapter 17: Database Scanning
Scan Related Software Components

17.2.2 PHAS

This field determines processing order for records that are in the same scan set. For example all records periodically
scanned at a 2 second rate are in the same scan set. All Event scanned records with the same EVNT are in the same scan
set, etc. For records in the same scan set, all records with PHAS=0 are processed before records with PHAS=1, which are
processed before all records with PHAS=2, etc.

In general it isnot agood ideato rely on PHAS to enforce processing order. It is better to use database links.

17.2.3 EVNT - Event Number

Thisfield only has meaning when SCANis set to Event scanning, in which case it specifies the event number. In order for
a record to be event scanned, EVNT must be in the range 0,...255. It should also be noted that some EPICS software
components will not request event scanning for event 0. One exampleisthe event Recor d record support module. Thus
the application devel oper will normally want to define eventsin the range 1,...,255.

17.2.4 PRIO - Scheduling Priority

This field can be used by any software component that needs to specify scheduling priority, e.g. the event and 1/O event
scan facility usesthisfield.

17.3 Scan Related Software Components

17.3.1 menuScan.dbd

Thisfile contains definitions for amenu related to field SCAN. The definitions are of the form:

menu(nenuScan) {
choi ce(nenuScanPassi ve, " Passi ve”)
choi ce(nenuScanEvent, ” Event ")
choi ce(nmenuScanl _O Intr,”1/O Intr”)
choi ce(nmenuScanl10_second, " 10 second”)
choi ce(nmenuScan5_second,”5 second”)
choi ce(nmenuScan2_second, "2 second”)
choi ce(nmenuScanl_second,”1 second”)
choi ce(nmenuScan_5_second,”.5 second”)
choi ce(nmenuScan_2_second, ”. 2 second”)
choi ce(nmenuScan_1 second,”.1 second”)

}

Thefirst three choices must appear first and in the order shown. The remaining definitions are for the periodic scan rates,
which must appear in the order slowest to fastest (the order directly controls the thread priority assigned to the particular
scan rate, and faster scan rates should be assigned higher thread priorities). At 1OC initialization, the menu choice strings
areread at scan initialization. The number of periodic scan rates and the period of each rate is determined from the menu
choice strings. Thus periodic scan rates can be changed by changing menuScan. dbd and loading this version via
dbLoadDat abase. The only requirement is that each periodic choice string must begin with a numeric value specified
in units of seconds.

240 EPICS Application Developer’'s Guide 1/5/09

Chapter 17: Database Scanning
Scan Related Software Components

17.3.2 dbScan.h

All software components that interact with the scanning system must include thisfile.

The most important definitionsin thisfile are:

#def i ne SCAN_PASSI VE nmenuScanPassi ve
#def i ne SCAN_EVENT nmenuScanEvent
#def i ne SCAN_| O EVENT menuScanl _O Intr

#defi ne SCAN_1ST PERIODIC (nmenuScanl_OlIntr + 1)

/*definitions for I/O Interrupt Scanning */
typedef struct io_scan_list *| OSCANPVT,;

l ong scanlnit(void);
voi d scanRun(voi d);
voi d scanPause(voi d);

voi d post _event (int event);

voi d scanAdd(struct dbConmon *);

voi d scanDel et e(struct dbConmon *);
doubl e scanPeri od(i nt scan);

voi d scanOnce(struct dbCommon *precord);
i nt scanOnceSet QueueSi ze(int size);

i nt scanppl (voi d); /* print periodic |ists*/
i nt scanpel (voi d); /* print event |ists*/
i nt scanpiol (void); /* print io_event |ist*/

voi d scanl ol nit (I OSCANPVT *);
voi d scanl oRequest (1 OSCANPVT) ;

The first set of definitions defines the various scan types. The next definition | OSCANPVT is used when interfacing with
the 1/0O interrupt scanner. The remaining definitions define the public scan access routines. These are described in the
following subsections.

17.3.3 Initializing And Controlling Database Scaning
scanlnit(void);
Theroutinescanl ni t iscaled by i ocl ni t . It initializes the scanning system.

scanRun(voi d);
scanPause(voi d);

These routines start and stop all the scan tasks respectively. They are used by thei ocl ni t, i ocRun and i ocPause
commands.

17.3.4 Adding And Deleting Records From Scan List

The following routines are called each time arecord is added or deleted from a scan list.

scanAdd(struct dbCommon *);
scanDel et e(struct dbConmon *);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 241

Chapter 17: Database Scanning
Scan Related Software Components

These routines are called by scanl ni t at 1OC initialization time in order to enter al records created via DCT into the
correct scan list. The routine dbPut calls scanDel et e and scanAdd each time a scan related field is changed (each
scan related field is declared to be SPC_SCANin dbConmon. dbd). scanDel et e is called before the field is modified
and scanAdd after the field is modified.

17.3.5 Obtaining the scan period from the SCAN field

doubl e scanPeriod(int scan);

The argument is an offset into the set of enum choices for menuScan.h. Most users will just use the SCAN field of a
database record. It returns the scan period in seconds. The result will be 0.0 if scan doesn’t refer to a periodic rate.

17.3.6 Declaring Database Event

Whenever any software component wants to declare a database event, it just calls:
post _event (event)

This can be called by virtually any 10C software component. For example sequence programs can call it. The record
support module for event Recor d calsit.

17.3.7 Interfacing to
/O Event Scanning

Interfacing to the I/O event scanner is done via some combination of device and driver support.

1. Include <dbScan. h>

2. For each separate event source the following must be done:
a. Declare an | OSCANPVT variable, e.g.
static | OSCANPVT i oscanpvt;
b. Cal scanl ol ni t, eg.
scanl ol nit (& oscanpvt);

3. Provide the device support get _i oi nt _i nf o routine. This routine has the format:
I ong get _ioint_info(
int cnd,
struct dbCommon *precord,
| OSCANPVT *ppvt);

Thisroutine is called each time the record pointed to by pr ecor d is added or deleted from an 1/0O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an 1/0O event list. This routine must give a
valueto *ppvt .

4. Whenever an I/O event is detected call scanl oRequest , e.g.
scanl oRequest (i oscanpvt)
This routine can be called from interrupt level. The request is actually directed to one of the standard callback
tasks. The actual oneis determined by the PRI Ofield of dbConmon.

The following code fragment shows an event record device support module that supports I/O event scanning:

#i ncl ude <vxWbrks. h>
#i ncl ude <types. h>
#i ncl ude <stdioLib. h>
#i ncl ude <intlLib.h>
#i ncl ude <dbDefs. h>

242 EPICS Application Developer’'s Guide 1/5/09

Chapter 17: Database Scanning
Implementation Overview

#i ncl ude <dbAccess. h>

#i ncl ude <dbScan. h>

#i nclude <recSup. h>

#i nclude <devSup. h>

#i ncl ude <event Record. h>

/* Create the dset for devEvent XXX */

long init();
I ong get _ioint_info();
struct {

| ong nunber;

DEVSUPFUN report;

DEVSUPFUN init;

DEVSUPFUN init_record;

DEVSUPFUN get i oint _info;

DEVSUPFUN read_event;
}devEvent Test | oEvent ={

5,

NULL,

init,

NULL,

get _ioint_info,

NULL};
static | OSCANPVT i oscanpvt;
static void int_service(l OSCANPVT i oscanpvt)
{

scanl oRequest (i oscanpvt);

}
static long init()
{
scanl ol nit (& oscanpvt);
i nt Connect (<vect or>, (FUNCPTR)i nt _servi ce, i oscanpvt);
return(0);
}
static |l ong get _ioint_info(
i nt cmd,
struct eventRecord *pr,
| OSCANPVT *ppvt)
{
*ppvt = ioscanpvt;
return(0);
}

17.4 | mplementation Overview

The code for the entire scanning system resides in dbScan. c, i.e. periodic, event, and 1/O event. This section gives an
overview of how the code in dbScan. ¢ is organized. The listing of dbScan. ¢ must be studied for a complete

understanding of how the scanning system works.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide

243

Chapter 17: Database Scanning
Implementation Overview

17.4.1 Definitions And Routines Common To All Scan Types

Everything is built around two basic structures:

struct scan_list {
FAST LOCK | ock;
ELLLI ST Iist;
short nodi fi ed;
| ong ticks; /*used only for periodic scan sets*/

}s

struct scan_el enent{
ELLNODE node;
struct scan_list *pscan_|list;
struct dbConmon *precord;

}

Later wewill seehow scan_| i st s are determined. For now just redlizethat scan_| i st. | i st isthe head of alist of
records that belong to the same scan set (for example, al records that are periodically scanned at a 1 second rate are in the
same scan set). The node field in scan_el enent contain the list links. The normal vxWorks| st Li b routines are used
to access the list. Each record that appears in some scan list has an associated scan_el enent . The SPVT field which
appears in dbConmon holds the address of the associated scan_el enent .

Thel ock, nodi fi ed, and pscan_| i st fieldsallow scan_el enment s, i.e. records, to be dynamically removed and
added to scan lists. If scanLi st , the routine which actually processes ascan list, is studied it can be seen that these fields
allow the list to be scanned very efficiently if no modifications are made to the list while it is being scanned. This s, of
course, the normal case.

ThedbScan. ¢ module contains several private routines. The following access a single scan set:

e printList: Printsthe names of al recordsin ascan set.

e scanList: Thisroutine isthe heart of the scanning system. For each record in a scan set it does the following:
dbScanLock(precord);
dbProcess(precord);
dbScanUnl ock(precord);
It also has code to recognize when a scan list is modified while the scan set is being processed.

e addToList: Thisroutine adds a new element to a scan list.
» deleteFromList: Thisroutine deletes an element from ascan list.

17.4.2 Event Scanning

Event scanning is built around the following definitions:

#defi ne MAX_EVENTS 256
typedef struct event _scan_list {
CALLBACK cal | back;
scan_li st scan_list;
}event scan_list;
static event_scan_li st
*pevent _| i st[NUM CALLBACK_PRI ORI Tl ES] [MAX_EVENTS] ;

244 EPICS Application Developer’'s Guide 1/5/09

Chapter 17: Database Scanning
Implementation Overview

pevent_list[][] —

—| event_scan_list

list —| scan_element
node —>| scan_element
node —_—
precord cee
precord

Figure 17-1: Scan List Memory Layout

pevent _|i st isa2d array of pointersto scan_| i st s. Note that the array allows for 256 events, i.e. one for each
possible event number. In other words, each event number and priority has its own scan list. No scan_lI i st isactually
created until the first request to add an element for that event number. The event scan lists have the memory layout
illustrated in Figure 17-1.

17.4.2.1 post_event
post _event (i nt event)

This routine is called to request event scanning. It can be caled from interrupt level. It looks at each
event _scan_| i st referenced by pevent _| i st [*][event] (one for each callback priority) and if any elements are
present in the scan_list a callbackRequest is issued. The appropriate calback task calls routine
event Cal | back, which just callsscanLi st .

17.4.31/0O Event Scanning

I/0 event scanning is built around the following definitions:

struct io_scan_list {

CALLBACK cal | back;

struct scan_|ist scan_list;

struct io_scan_|ist *next ;
}
static struct io_scan_list

*i osl _head[NUM_CALLBACK_PRI ORI Tl ES]
= { NULL, NULL, NULL};

Thearray i osl _head andthefield next areonly kept so that scanpi ol can beimplemented and will not be discussed
further. 1/0 event scanning uses the general purpose callback tasks to perform record processing, i.e. no task is spawned
for I/0O event. The callback field of i 0_scan_| i st isused to communicate with the callback tasks.

The following routines implement /O event scanning:

17.4.3.1 scanlolnit
scanlolnit (1 OSCANPVT *ppi oscanpvt)

This routine is called by device or driver support. It is called once for each interrupt source. scanl ol ni t allocates and
initializes an array of i 0_scan_| i st structures; one for each callback priority and puts the address in pi oscanpvt .
Remember that three callback priorities are supported (low, medium, and high). Thus for each interrupt source the
structures areillustrated in Figure 17-1.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 245

Chapter 17: Database Scanning
Implementation Overview

papPeriodic ——

scan_list

list

— s R ———
> | scan_element scan_element
node node
precord precord

Figure 17-1: Structure after ioclnit

When scanAdd or scanDel et e are called, they call the device support routine get _i oi nt _i nf o which returns
pi oscanpvt . Thescan_el enent isadded or deleted from the correct scan list.
17.4.3.2 scanloRequest

scanl oRequest (| OSCANPVT pi oscanpvt)

Thisroutineis called to request 1/0 event scanning. It can be called from interrupt level. It looks at eachi 0_scan_|I i st
referenced by pi oscanpvt (one for each callback priority) and if any elements are present in the scan_|ist a
cal | backRequest is issued. The appropriate callback task cals routine i oevent Cal | back, which just cals
scanli st.

17.4.4 Periodic Scanning

Periodic scanning is built around the following definitions:

static int nPeriodic;
static struct scan_list **papPeri odic;
static int *periodi cTaskld;

nPeri odi ¢, which is determined at i ocl ni t time, is the number of periodic rates. papPer i odi ¢ isa pointer to an
array of pointers to scan_| i sts. There is an array element for each scan rate. Thus the structure illustrated in
Figure 17-1 exists afteri ocl ni t .

A periodic scan task is created for each scan rate. The following routines implement periodic scanning:

17.4.4.1 initPeriodic
i nitPeriodic()

pioscanpvt —=>

io_scan_list
.callback
scan_list
—| scan_list |7 | scan_element
- node
list ce
C precord

Figure 17-1: Interrupt Source Structure

246 EPICS Application Developer’'s Guide 1/5/09

Chapter 17: Database Scanning
Implementation Overview

This routine first determines the scan rates. It does this by accessing the SCAN field of the first record it finds. It issues a
call todbCet Fi el d withaDBR_ENUMrequest. This returns the menu choices for SCAN. From this the periodic rates are

determined. The array of pointers referenced by papPeri odi c is alocated. For each scan rate a scan_| i st is
allocated and aper i odi cTask is spawned.

17.4.4.2 periodicTask
peri odi cTask (struct scan_list *psl)

Thistask just performs an infinite loop of calling scanLi st and then calling t askDel ay to wait until the beginning of
the next time interval.

17.4.5 Scan Once

17.4.5.1 scanOnce
voi d scanOnce (dbConmon *precord)

A task onceTask waits for requests to issue a dbPr ocess request. The routine scanOnce puts the address of the
record to be processed in aring buffer and wakes up onceTask.

This routine can be called from interrupt level.

17.4.5.2 SetQueueSize

scanOnce places its request on a vxWorks ring buffer.This is set by default to 1000 entries. It can be changed by
executing the following command in the vxWorks startup file.

i nt scanOnceSet QueueSi ze(int size);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 247

Chapter 17: Database Scanning
Implementation Overview

248 EPICS Application Developer’'s Guide 1/5/09

Chapter 18: 10C Shdll

18.1 I ntroduction

The EPICS 10C shell is asimple command interpreter which provides a subset of the capabilities of the vxWorks shell. It
is used to interpret startup scripts (st.cmd) and to execute commands entered at the console terminal. In most cases
vxWorks startup scripts can be interpreted by the IOC shell without modification. The following sections of this chapter
describe the operation of the 10C shell from the user's and programmer's points of view.

18.2 | OC Shell Operation

The 10C shell reads lines of input, expands environment variable parameters, breaks the line into commands and
arguments then calls functions corresponding to the decoded command. Commands and arguments are separated by one
or more “space' characters. Characters interpreted as spaces include the actual space character and the tab character as
well as commas and open and close parentheses. Thus, the command line

dbLoadRecor ds("db/ dbExanpl el. db", "user =nr k")

would be interpreted by the IOC shell as the dbLoadRecor ds command with arguments db/ dbExanpl el. db and
user=nr k.

Unrecognized commands result in a diagnostic message but are otherwise ignored. Missing arguments are given a default
value (0 for numeric arguments, NULL for string arguments). Extra arguments are ignored.

Unlike the vxWorks shell, string arguments do not have to be enclosed in quotes unless they contain one or more of the
space characters, in which case one of the quoting mechanisms described in the following section must be used.

18.2.1 Environment variable parameter expansion

Lines of input not beginning with a comment character (#) are searched for character sequences of the form ${ name} or
$(name). Such sequences are replaced with the value of the environment variable name before any other processing takes
place. Expansion isrecursive so, for example,

epi cs> epi csEnvSet v1 \${v2}
epi cs> epi csEnvSet v2 \ ${v3}
epi cs> epi csEnvSet v3 sonmePV
epi cs> dbpr ${vi}

will print information about the somePV process variable — the ${v1} argument to the dbpr command expands to
${ v2} which expandsto ${ v3} which expandsto somePV. The backslashes in the definitions are needed to postpone
the expansion, otherwise it would be done before the values of v1 and v2 are set.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 249

Chapter 18: IOC Shell
I0C Shell Operation

18.2.2 Quoting

Quoting is used to remove the special meaning normally assigned to certain characters and can be used to include space or
guote characters in arguments. Quoting can not be used to extend a command over more than one input line.

There are three quoting mechanisms: the backslash character, single quotes, and double quotes. A backslash (\) preserves
the literal value of the following character. Enclosing characters in single or double quotes preserves the literal value of
each character (except a backslash) within the quotes, except that parameter expansion still occurs within double quotes.
A single quote may occur between double quotes and a double quote may occur between single quotes.

18.2.3 Command-line editing and history

The IOC shell can use the readline or teclalibrary to obtain input from the console terminal. This provides full command-
line editing as well as easy access to previous commands through the command-line history capabilties provided by these
libraries. For full details, refer to the readline or teclalibrary documentation. Command and argument completion is not
supported.

If neither the readline nor tecla library is used the only command-line editing and history capabilities will be those
supplied by the underlying operating system. The console keyboard driver in Windows, for example, provides its own
command-line editing and history commands. On vxWorks the ledLib command-line input libraries are used.

18.2.4 Redirection

The 10C shell recognizes a subset of UNIX shell 1/O redirection operators. The redirection operators may precede, or
appear anywhere within, or follow a command. Redirections are processed in the order they appear, from left to right.
Failure to open or create afile causes the redirection to fail and the command to be ignored.

Redirection of input causes the file whose name results from the expansion of fi | enane to be opened for reading on
file descriptor n, or the standard input (file descriptor 0) if n is not specified. The general format for redirecting input is:

[n] <fil enane

As a special case, the I0C shell recognizes a standard input redirection appearing by itself (i.e. with no command) as a
request to read commands from f i | enane until an exit command or EOF is encountered. The IOC shell then resumes
reading commands from the current source. Commands read from f i | ename are not added to the readline command
history. The level of nesting is limited only by the maximum number of files that can be open simultaneously.

Redirection of output causesthe file whose name resultsfrom the expansion of f i | enane to be opened for writing on
file descriptor n, or the standard output (file descriptor 1) if n is not specified. If the file doesnot existit iscreated; if
it does exist it istruncated to zero size. The general format for redirecting output is:

[n]>fil enane
The general format for appending output is:
[n]>>fil ename

Redirection of output in this fashion causes the f i | ename to be opened for appending on file descriptor n, or the
standard output (file descriptor 1) if n isnot specified. If the file does not exist it is created.

250 EPICS Application Developer’'s Guide 1/5/09

Chapter 18: I0OC Shell
IOC Shell Operation

18.2.5 Utility Commands

The 1OC shell recognizes the following commands as well as the commands described in chapter 6 (Database Design) and
chapter 9 (I0OC Test Facilities) among others. In addition, the commands described in the sequencer documentation are
recognized.

Command Description

help [command ...] Display synopsis of specified commands. Wild-card matching isapplied so ‘hel p db*’ displaysa
synopsis of all commands beginning with the letters ‘db’.
With no arguments display alist of all commands.

A “# inthefirst column of alineindicates the beginning of a comment which continues to the end of
theline
exit Stop reading commands. When the top-level command interpreter encounters an exit command or

end-of-file (EOF) it returnsto its caller.

cd directory Change working directory to directory.
pwd Print the name of the working directory.
var [name [valug]] If both arguments are present, assign the value to the named variable.

If only the name argument is present, print the current value of that variable.

If neither argument is present, print the value of al variables registered with the shell. Variablesare
registered in application database definitions using the variable keyword as described in Section 6.9
on page 104.

show [-level] [task ...] Show information about specified tasks. If no task arguments are present, show information on all
tasks. The level argument controls the amount of information printed. The default level isO. The
task arguments can be task names or task i.d. numbers.

system command_string Send command_string to the system command interpreter for execution. This command is present
only if some application database definition file containsr egi st r ar (i ocshSyst enConmand)
and if the system provides a suitable command interpreter (vxWorks does not).

epicsEnvSet name value Set environment variable name to the specified value.

epicsEnvShow [name] If no name is specified the names and values of all environment variables will be shown.
If aname is specified the value of that environment variable will be shown.

epicsParamShow Show names and values of al EPICS configuration parameters.
iocLoglnit Initialize 10C logging.
epicsThreadSleep sec Pause execution of 10C shell for sec seconds.

The var command is intended for simple applications such as setting the value of debugging flags. Applications which
require more complex expression handling should use the cexp package.

A spy command to show periodic activity reportsis available on RTEMS as part of the RTEMS_UTILS support module.
The following changes must be made to add this command to an application.
* Add an RTEMS_UTILS entry to the application configure/REL EASE file.

» Add spy. dbd to the list of application dbd files and rt ensut i | s to the list of application libraries in the
application Makefile.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 251

Chapter 18: IOC Shell
I0C Shell Programming

18.2.6 ENVIRONMENT VARIABLES

The IOC shell uses the following environment variables to control its operation.

Variable Description

IOCSH_PS1 Prompt string. Default is"epics>".

IOCSH_HISTSIZE Number of previous command lines to remember. If the IOCSH_HISTSIZE environment variable is not
present the value of the HISTSIZE environment variable isused. In the absence of both environment
variables, 10 command lines will be remembered.

TERM, INPUTRC These and other environment variables are used by the readline and termcap libraries and are described in
the documentation for those libraries.

18.3 OC Shell Programming

The declarations described in this section are included in thei ocsh. h header file.

18.3.1 Invoking the |OC shell

The prototypes for calling the IOC shell command interpreter are:

i nt iocsh(const char *pathnane);
i nt iocshCnd(const char *cnd);

The pathname argument to the i ocsh function is the name of the file from which commands are to be read. If the
pathname argument is NUL L, commands are read from the standard input and prompts are issued to the standard outpui.
Commands are read until an exi t command is encountered or until end-of-file is reached, at which point iocsh returns a
value of 0. If the specified file can not be opened iocsh returns -1.

The I0OC shell can be invoked from the vxWorks shell, either from within a vxWorks startup script or from vxWorks
command-line interpreter, using

i ocsh "script"

to read from an |OC shell script. It can aso be invoked from the vxWorks command-line interpreter with no argument in
which case the |OC shell takes over the duties of command-line interaction.

Thei ocshOnd function takes asingle 10C shell command and executes it. The function may be called from any thread,
but many of the commands are not necessarily thread-safe so this should only be used with care. The function is most
useful to execute asingle I0C shell command from a vxWorks startup script or command lineg, like this:

i ocshCnd "iocsh conmand string"”

The stdio stream redirection and environment variable expansion processes described above are performed on the string
as part of the execution process.

252 EPICS Application Developer’'s Guide 1/5/09

Chapter 18: I0OC Shell
10C Shell Programming

18.3.2 Registering Commands

Commands must be registered before they can be recognized by the IOC shell. Registration is achieved by calling the
registration function:

voi d i ocshRegi ster(const iocshFuncDef *pi ocshFuncDef, iocshCall Func func);

The first argument is a pointer to a data structure which describes the command and any arguments it may take. The
second argument is a pointer to a function which will be called by iocsh when the corresponding command is
encountered.

The command is described by the i ocshFuncDef structure:

struct iocshFuncDef ({
const char *nane;
i nt nargs;
const iocshArg * const *arg;

}s

The name element is the name of the command. The arg element is a pointer to an array of pointers to structures each of
which defines a single argument. The nargs element declares the number of entries in the array of pointers to the
argument descriptions. If nargsis zero, arg can be NULL. The structures which define each of the argumentsiis:

struct iocshArg {
const char *nane;
i ocshArgType type;
}iocshArg;

The name element is used by the help command to print a synopsis for the command. The type element describes the type
of the argument and takes one of the following values:

Type Specifier Description
iocshArgint The argument will be converted to an integer value.
iocshArgDouble The argument will be converted to a double-precision floating point
vaue.
iocshArgString The argument will be left asastring. The memory used to hold the
string is ‘owned’ by iocsh and will be reused once the handler function
returns.

iocshArgPersistentString A copy of the argument will be made and a pointer to the copy will be
passed to the handler. The called function can release this copy by
using the pointer as an argument to free().

iocshArgPdbbase The argument must be pdbbase.

iocshArgArgv An arbitrary number of argumentsis expected. Subsequent iocshArg
structures will be ignored.

The “handler’ function which is called when its corresponding command is recognized should be of the form:

voi d showCal | Func(const iocshArgBuf *args);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 253

Chapter 18: IOC Shell
I0C Shell Programming

The argument to the handler function is a pointer to an array of unions. The number of elements in this array is equal to
the number of arguments specified in the structure describing the command. The type and name of the union element
which contains the argument value depends on the “type' element of the corresponding argument descriptor:

Type Specifier Type Union element
iocshArglnt int argg[i].iva
iocshArgDouble double | argdi].dval
iocshArgString char * argg[i].sval
iocshArgPersistentString
iocshArgPdbbase void * argg[i].vval
iocshArgArgv int argg[i].aval.ac

char ** | argdi].aval.av

If ani ocshAr gAr gv argument typeis present it is often the first and only argument specified for the command. Inthis
case, ar gs[0] . aval . av[0] will bethe name of the command, ar gs[0] . aval . av[1] will bethefirst argument,
and so on.

18.3.3 Registrar Command Registration

Commands are normally registered with the IOC shell in a registrar function. The application’s database description file
usesther egi st rar keyword to specify a function which will be called from the EPICS initialization code during the
application startup process. Thisfunction then callsi ocshRegi st er to register its commands with the iocsh.

The following code fragments shows how this can be performed for an example driver.
#i ncl ude <i ocsh. h>
#i ncl ude <epi csExport. h>

/* drvXxx code, FuncDef and Call Func definitions ... */

static void drvXxxRegi strar(void)

{

}
epi csExport Regi strar (drvXxxRegi strar);

i ocshRegi st er (&dr vXxxConfi gur eFuncDef, drvXxxConfi gureCall Func);

To include this driver in an application a devel oper would then add
regi strar (drvXxxRegi strar)

to an application database description file.

254 EPICS Application Developer’'s Guide 1/5/09

Chapter 18: I0OC Shell
IOC Shell Programming

18.3.4 Automatic Command Registration

A C++ static constructor can also be used to register 10C shell commands before the EPICS application begins. The
following example shows how the epi csThr eadSl eep command could be described and registered.

#i ncl ude <i ocsh. h>

static const iocshArg epicsThreadSl eepArg0 = { "seconds", i ocshArgDoubl e};
static const iocshArg *const epicsThreadSl eepArgs[1l] =
{ &epi csThr eadS| eepAr g0} ;
static const iocshFuncDef epicsThreadSl eepFuncDef =
{"epi csThreadSl eep", 1, epi csThr eadS| eepAr gs};
static void epicsThreadSl eepCal | Func(const iocshArgBuf *args)

{
epi csThreadSl eep(args[0].dval);

}

static int doRegister(void)

{
i ocshRegi st er (epi csThreadSl eepFuncDef, epi csThreadSl eepCal | Func) ;
return 1,

}

static int done = doRegister();

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 255

Chapter 18: IOC Shell
I0C Shell Programming

256 EPICS Application Developer’'s Guide 1/5/09

Chapter 19: libCom

This chapter and the next describe the facilities provided in <base>/ src/|i bCom This chapter describes facilities
which are platform independent. The next chapter describes facilities which have different implementations on different
platforms.

19.1 bucketLib

bucket Li b. h describes a hash facility for integers, pointers, and strings. It is used by the Channel Access Server. Itis
currently undocumented.

19.2 calc

post fi x. h defines several macros and the routines used by the calculation record type calcRecord, access security, and
other code, to compile and evaluate mathematical expressions. The syntax of the infix expressions accepted is described in
Section 19.2.1 on page 258 below.

| ong postfix(const char *psrc, char *ppostfix, short *perror);
| ong cal cArgUsage(const char *ppostfix, unsigned |ong *pinputs,
unsi gned | ong *pstores);
const char * calcErrorStr(short error);
| ong cal cPerforn{doubl e *parg, double *presult, const char *ppostfix);

The postfix() routine converts an expression from infix to postfix notation. It is the callers's responsibility to make sure
that ppostfix points to sufficient storage to hold the postfix expression; the macro | NFI X_TO POSTFI X_SI ZE(n) can
be used to calculate an appropriate buffer from the length of the infix string. There is no longer a maximum length to the
input expression that can be accepted, although there are internal limits to the complexity of the expressions that can be
converted and evaluated. If postfix() returns anon-zero value it will have placed an error code at the location pointed to by
perror. The error codes used are defined in post fi x. h as a series of macros with names starting CALC _ERR , but a
string representation of the error code is more useful and can be obtained by passing the value to the calcErrorStr()
routine, which returns a static error message string explaining the error.

Software using the calc subsystem may need to know what expression arguments are used and/or modified by a particular
expression. It can now discover this from the postfix string by calling calcArgUsage(), which takes two pointers pinputs
and pstoresto apair of unsigned long bitmaps which return that information to the caller (passing aNULL value for either
of these pointersislegal). The least signficant bit (bit 0) of the bitmap at * pinputs will be set if the expression depends on
the argument A, and so on through bit 11 for the argument L. Similarly, bit O of the bitmap at * pstores will be set if the
expression assigns a value to the argument A. An argument that is not used until after a value has been assigned to it will
not be set in the pinputs bitmap, thus the bits can be used to determine whether a value needs to be supplied for their
associated argument or not (for the purposes of evaluating the expression at |east; other considerations make it desirable to
till fetch all input values in the case of the CALC record). The return value from calcArgUsage() will be non-zero if the
ppostfix expression wasillegal, otherwise O.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 257

Chapter 19: libCom
calc

The postfix expression is evaluated by calling the calcPerform() routine, which returns the status values 0 for OK, or non-
zero if an error is discovered during the evaluation process.

The arguments to calcPerform() are:

parg - Pointer to an array of double values for the arguments A-L that can appear in the expression. Note that the
argument values may be modified if the expression uses the assignment operator.

presult - Where to put the calculated result, which may be aNaN or Infinity.

ppostfix - The postfix expression created by postfix().

19.2.1 Infix Expression Syntax

The infix expressions that can be used are very similar to the C expression syntax, but with some additions and subtle
differencesin operator meaning and precedence. The string may contain a series of expressions separated by a semi-colon
character ’; ' any one of which may actually provide the calculation result; however al of the other expressionsincluded
must assign their result to a variable. All aphabetic elements described below are case independent, so upper and lower
case |etters may be used and mixed in the variable and function names as desired. Spaces may be used anywhere within an
expression except between the characters that make up a single expression element.

19.2.1.1 Numeric Literals

The simplest expression element is a numeric literal, any (positive) number expressed using the standard floating point
syntax that can be stored as a double precision value. This now includes the values | nf i ni t y and NaN (not a number).
Note that negative numbers are actually encoded as a positive literal to which the unary negate operator is applied.

Examples:

1
2.718281828459
| nf

19.2.1.2 Constants

There are three trigonometric constants available to any expression which return avalue:

* pi returnsthe value of the mathematical constant Tt
» D2Revauates to 17180 which, when used as a multiplier, converts an angle from degrees to radians.
» R2Devaluates to 180/rtwhich as a multiplier converts an angle from radians to degrees.

19.2.1.3 Variables

Variables are used to provide inputs to an expression, and are named using the single letters A through L inclusive or now
the keyword VAL which refers to the previous result of this calculation. The software that makes use of the expression
evaluation code should document how the individual variables are given values; for the calc record type the input links
INPA through INPL can be used to obtain these from other record fields, and VAL refersto the the VAL field (which can
be overwritten from outside the record via Channel Access or a database link).

19.2.1.4 Variable Assignment Operator

Recently added isthe ability to assign the result of a sub-expression to any of the single letter variables, which can then be
used in another sub-expression. The variable assignment operator is the character pair : = and must immediately follow
the name of the variable to receive the expression value. Since the infix string must return exactly one value, every
expression string must have exactly one sub-expression that is not an assignment, which can appear anywhere in the
string. Sub-expressions within the string are separated by a semi-colon character.

Examples:

258 EPICS Application Developer’'s Guide 1/5/09

Chapter 19: libCom
calc

B; B:=A
i:=i+1; a*sin(i*D2R)

19.2.1.5 Arithmetic Operators

The usual binary arithmetic operators are provided: + - * and/ with their usua relative precedence and left-to-right
associativity, and - may aso be used as a unary negate operator where it has a higher precedence and associates from
right to left. Thereis no unary plus operator, so numeric literals cannot begin with a+ sign.

Examples:

a*b + ¢
al-4 - b
Three other binary operators are also provided: %is the integer modulo operator, and the synonymous operators * * and »

raise their left operand to the power of the right operand. %has the same precedence and associativity as* and / , while
the power operators associate left-to-right and have a precedence in between * and unary minus.

Examples:

e:=a%l0; d:=a/10%0; c:=a/100%0; b:=a/1000%0; b*4096+c*256+d*16+e
sqrt(a**2 + b**2)

19.2.1.6 Algebraic Functions

Various algebraic functions are available which take parameters inside parentheses. The parameter seperator is a comma.

» Absolutevalue: abs(a)

» Exponential €& exp(a)

 Logarithm, base 10: | og(a)

» Natura logarithm (base€): | n(a) or | oge(a)
* nparameter maximum value: max(a, b, ...)
e nparameter minimumvalue: m n(a, b, ...)
» Squareroot: sqr (a) orsqrt(a)

19.2.1.7 Trigonometric Functions
Standard circular trigonometric functions, with angles expressed in radians:

* Sine:sin(a)

» Cosine: cos(a)

e Tangent: t an(a)

» Arcsine: asi n(a)

» Arccosine: acos(a)
» Arctangent: at an(a)

» 2 parameter arctangent: at an2(a, b) — Note that these arguments are the reverse of the ANS C function, so
while C would return arctan(a/b) the calc expression engine returns arctan(b/a)

19.2.1.8 Hyperbolic Trigonometry

The basic hyperbalic functions are provided, but no inverse functions (which are not provided by the ANSI C math library
either).

» Hyperbolic sine: si nh(a)

» Hyperbolic cosine: cosh(a)

* Hyperbolic tangent: t anh(a)

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 259

Chapter 19: libCom
calc

19.2.1.9 Numeric Functions
The numeric functions perform operations related to the floating point numeric representation and truncation or rounding.

» Round up to next integer: cei | (a)

* Round down to next integer: f | oor (a)

» Round to nearest integer: ni nt (a)

 Test for infinite result: i si nf (&)

 Test for any non-numeric values. i snan(a, ...)
Test for al finite, numericvalues. finite(a, ...)
» Random number between 0 and 1: r ndm

19.2.1.10 Boolean Operators
These operators regard their arguments as true or false, where 0.0 is false and any other valueis true.

e Booleanand:a && b
* Booleanor:a || b
* Boolean not: ! a

19.2.1.11 Bitwise Operators

The bitwise operators convert their arguments to an integer (by truncation), perform the appropriate bitwise operation and
convert back to afloating point value. Note that unlike in C, » is not a bitwise exclusive-or operator.

» Bitwiseand:a & bora and b

* Bitwiseor:a | bora or b
 Bitwiseexclusiveor:a xor b

* Bitwise not (ones complement): ~a or not a
 Bitwiseleft shift:a << b

* Bitwiseright shift:a >> b

19.2.1.12 Relational Operators
Standard numeric comparisons between two val ues:

e Lessthan:a < b

* Lessthanorequa to:a <= b

e Equato:a = bora ==

» Greaterthanorequalto:a >= b
* Greaterthan:a > b

* Notequalto:a != bora # b

19.2.1.13 Conditional Operator

Expressions can use the C conditional operator, which has alower precedence than al of the other operators except for the
assignment operator.

» condition ? trueresult : false result
Example:
a<360?at+tl : O

260 EPICS Application Developer’'s Guide 1/5/09

Chapter 19: libCom
cppStd

19.2.1.14 Parentheses

Sub-expressions can be placed within parentheses to override operator precence rules. Parentheses can be nested to any
depth, but the intermediate value stack used by the expression evaluation engine is limited to 80 results (which would
require an expression at least 321 characterslong to reach).

19.3 cppStd

This subdirectory of libCom isintended for facilities such as class and function templates that implement parts of the ISO
standard C++ library where such facilities are not available or not efficient on all the target platforms on which EPICSis
supported. EPICS does not make use of the C++ container templates because the large number of memory allocation and
deletion operations that these use causes memory pool fragmentation on some platforms, threatening the lifetime of an
individual 10C.

19.3.1 epicsAlgorithm

epi csAl gorit hm h contains a few templates that are also available in the C++ standard header al gori t hm but are
provided here in a much smaller file—al gor i t hmcontains many templates for sorting and searching. If all you need
from thereis std::min(), std::max() and/or std::swap() your code will compile faster if you include epi csAl gorit hm h
and use epicsMin(), epicsMax() and epicsSwap() instead.

template <class T> Meaning

const T& epicsMin(const T& a, const T& b) Returns the smaller of a or b compared using a<b. Handles NaNs correctly.

const T& epicsMax(const T& a, const T& b) Returns the larger of a or b compared using a<b. Handles NaNa correctly.

void epicsSwap(T& a, T& b) Swaps the values of a and b; T must have a copy-constructor and operator=.

19.4 epicsExit

void epicsExit(int status);

voi d epi csExitCall At Exi ts(void);

voi d epi csAtExit(void (*epi csExitFunc)(void *arg), void *arg);

voi d epi csExitCall At ThreadExits(void);

int epicsAtThreadExit(void (*epi csEkxitFunc)(void *arg), void *arg);

Thisis an extended replacement for the Posix exi t and at exi t routines, which also provides a pointer argument to pass
to the exit handlers. This facility was created because of problems on vxWorks and windows with the implementation of
at exi t, i.e. neither of these systemsimplement exi t and at exi t according to the POSIX standard.

Method Meaning
epicsExit This calls epicsExitCall AtExits and then passes status on to exit.
epicsExitCall AtExits This calls each of the functions registered by prior calls to epicsAtEXxit, in reverse
order of their registration. Most applications will not call this routine directly.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 261

Chapter 19: libCom
cvtFast

Method M eaning

epicsAtEXit Register afunction and an associated context parameter, to be called with the given

parameter when epicsExitCall AtExits isinvoked.

epicsExitCall AtThreadExits This calls each of the functions that were registered by the current thread calling

epicsAtThreadExit, in reverse order of the function registration. Thisroutineis
called automatically when an epicsThread's main entry method returns, but will not
be run if the thread is stopped by other means.

epicsAtThreadExit Register afunction and an associated context parameter. The function will be called

with the given parameter when epicsExitCall AtThreadExitsisinvoked by the current
thread.

19.5 cvtFast

cvt Fast . h provides routines for converting various numeric types into an ascii string. They offer a combination of
speed and convenience not avail able with sprintf().

/* These functions return the nunber of ASCI| characters generated */

i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt

cvt Fl oat ToStri ng(fl oat val ue, char *pstr, unsigned short precision);
cvt Doubl eToSt ri ng(doubl e val ue, char *pstr, unsigned short prec);

cvt Fl oat ToExpString(fl oat val ue, char *pstr, unsigned short prec);

cvt Doubl eToExpSt ri ng(doubl e val ue, char *pstr, unsigned short prec);
cvt Fl oat ToConpact Stri ng(float value, char *pstr, unsigned short prec);
cvt Doubl eToConpact Stri ng(doubl e val ue, char *pstr, unsigned short prec);
cvt CharToStri ng(char val ue, char *pstring);

cvt Uchar ToStri ng(unsi gned char val ue, char *pstr);

cvt Short ToStri ng(short val ue, char *pstr);

cvt Ushort ToSt ri ng(unsi gned short val ue, char *pstr);

cvt LongToStri ng(epi csl nt 32 val ue, char *pstr);

cvt U ongToStri ng(epi csU nt 32 val ue, char *pstr);

cvt LongToHexStri ng(epi cslnt32 val ue, char *pstr);

cvt LongToCct al String(epi cslnt32 val ue, char *pstr);

unsi gned | ong cvtBitsToU ong(

epi csU nt 32 src,
unsi gned bitFiel dOffset,
unsi gned bitFi el dLength);

unsi gned | ong cvt U ongToBit s(

epi csU nt 32 src,

epi csU nt 32 dest,

unsi gned bitFiel dOffset,
unsi gned bitFi el dLength);

19.6 cxxTemplates

This directory contains the following C++ template headers:

» resour ceLi b. h - A C++ hash facility that implements the same functionality as bucketLib

262

EPICS Application Developer’'s Guide 1/5/09

Chapter 19: libCom
dbmf

* t sBTr ee. h - Binary tree.

e tsDLLi st. h-DoubleLinked List

» tsFreeli st. h - FreeList for efficient new/delete
e t sM nMax. h - min and max.

* tsSLLi st. h-SingleLinked List

Currently these are only being used by Channel Access Clients and the portable Channel Access Server. It has not been
decided if any of these will remain in libCom.

19.7 dbmf

dbnf . h (Database Macro/Free) describes afacility that prevents memory fragmentation when memory is allocated and
then freed a short time later.

Routines within iocCore like dbL oadDatabase() have the following attributes:

» They repeatedly call malloc() followed soon afterwards by acall to free() the temporarily allocated storage.
» Between those callsto malloc() and free(), an additional call to malloc() is made that does NOT have an associated
freg().

In some environments, e.g. vxWorks, this behavior causes severe memory fragmentation.

The dbmf facility stops the memory fragmentation. It should NOT be used by code that allocates storage and then keeps it
for a considerable period of time before releasing. Such code can use the freeList library described below.

int dbonflnit(size_t size, int chunkltens);
voi d *dbnf Mal | oc(size_t bytes);

voi d dbnf Free(voi d* bytes);

voi d dbnf Fr eeChunks(voi d);

i nt dbnf Show(int |evel);

Routine Meaning

dbmfinit() Initialize the facility. Each time malloc() must be called si ze* chunkl t ens bytesare
alocated. si ze isthe maximum size request from domfMalloc() that will be allocated from the
domf pool. If domfInit() was not called before one of the other routines then it is automatically
called with si ze=64 and chuckl t ens=10.

domfMalloc() Allocate memory. If byt es is> si ze then malloc() is used to allocate the memory.

domfFree() Free the memory allocated by dbmfMalloc().

dbmfFreeChunks() Free all chunks that have contain only free items.

dbmf Show() Show the status of the dbmf memory pool.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 263

Chapter 19: libCom
ellLib

19.8 ellLib

el | Li b. h describes adouble linked list library. It provides functionality similar to the vxWorks IstLib library. See the
vxWorks documentation for details. There isan el XXX () routine to replace most vxWorks IstX XX () routines.

t ypedef struct ELLNODE {
struct ELLNODE *next;
struct ELLNODE *previous;

} ELLNODE;

typedef struct ELLLIST {
ELLNODE node;
i nt count;
void elllnit (ELLLIST *pList);
int ellCount (ELLLIST *pList);
ELLNODE *el | First (ELLLIST *pList);
ELLNODE *el | Last (ELLLI ST *pList);
ELLNODE *el | Next (ELLNCDE *pNode);
ELLNODE *el | Previ ous (ELLNODE *pNode);
voi d el |l Add (ELLLI ST *pList, ELLNODE *pNode);
voi d ell Concat (ELLLIST *pDstList, ELLLIST *pAddList);
voi d el | Del ete (ELLLIST *pList, ELLNODE *pNode);
voi d el | Extract (ELLLIST *pSrcList, ELLNODE *pStart Node,
ELLNCDE *pEndNode, ELLLI ST *pDstList);
ELLNCDE *el | Get (ELLLIST *pList);
void elllnsert (ELLLIST *plist, ELLNODE *pPrev, ELLNODE *pNode);
ELLNODE *el | Nth (ELLLI ST *pList, int nodeNunj;
ELLNODE *el | NSt ep (ELLNODE *pNode, int nStep);
int ellFind (ELLLI ST *pList, ELLNODE *pNode);
voi d ell Free (ELLLI ST *pList);
void ellVerify (ELLLIST *pList);

19.9 epicsRingBytes
epi csRi ngByt es. h contains

epi csRi ngBytesl d epi csRi ngByt esCreate(int nbytes);

voi d epi csRi ngByt esDel et e(epi csRi ngBytesld id);

i nt epi csRi ngByt esGet (epi csRi ngBytesld id, char *val ue,int nbytes);
i nt epi csRi ngByt esPut (epi csRi ngBytesld id, char *val ue,int nbytes);
voi d epi csRi ngByt esFl ush(epi csRi ngBytesid id);

i nt epi csRi ngByt esFreeByt es(epi csRingBytesld id);

i nt epi csRi ngByt esUsedByt es(epi csRi ngBytesld id);

i nt epi csRi ngBytesSi ze(epi csRi ngBytesld id);

i nt epi csRi ngBytesl senpty(epicsRingBytesld id);

i nt epicsRingByteslsFull (epicsRingBytesld id);

264 EPICS Application Developer’'s Guide 1/5/09

Chapter 19: libCom
epicsRingPointer

Method M eaning

epicsRingBytesCreate() Create anew ring buffer of size nbytes. The returned epicsRingBytesld is passed to the other ring
methods.

epicsRingBytesDel ete() Delete the ring buffer and free any associated memory.
epicsRingBytesGet() Move up to nbytes from the ring buffer to value. The number of bytes actually moved is returned.
epicsRingBytesPut() Move up to nbytes from value to the ring buffer. The number of bytes actually moved is returned.
epicsRingBytesF ush() Make the ring buffer empty.
epicsRingBytesFreeBytes() Return the number of free bytesin the ring buffer.
epicsRingBytesUsedBytes() | Return the number of bytes currently stored in the ring buffer.
epicsRingBytesSize() Return the size of the ring buffer, i.e., nbytes specified in the call to epicsRingBytesCreate().
epicsRingBytes| SEmpty() Return (true, false) if thering buffer is currently empty.

epicsRingBytesl sFull()

Return (true, false) if the ring buffer is currently empty.

epicsRingBytes has the following properties:

* For aring buffer with asingle writer it is not necessary to lock epicsRingBytesPut() calls.

* For aring buffer with asingle reader it is not necessary to lock epicsRingBytesGet() calls.
* epicsRingBytesFlush() should only be used when both gets and puts are locked out.

» Readers and writers must be prepared to deal with transfers smaller than the requested size.

19.10 epicsRingPointer

epi csRi ngPoi nt er . h describes a C++ and a C facility for acommonly used type of ring buffer.

19.10.1 C++ Interface

EpicsRingPointer provides methods for creating and using ring buffers (first in first out circular buffers) that store
pointers. It is designed so that a writer thread and reader thread can access the ring simultaneously without requiring

mutual exclusion.

tenpl ate <class T>

cl ass epi csRi ngPoi nter {

public:

epi csRi ngPoi nter (int size);
~epi csRi ngPoi nter();

bool push(T *p);

T pop();
void flush();

int getFree() const;
int getUsed() const;
int getSize() const;

EPICS Release 3.14.10

EPICS Application Developer’'s Guide 265

Chapter 19: libCom
epicsRingPointer

bool isEmpty() const;
bool isFull () const;

private: // Prevent conpiler-generated nenber functions
/1 default constructor, copy constructor, assignment operator
epi csRi ngPoi nter();
epi csRi ngPoi nt er (const epi csRi ngPoi nter &);
epi csRi ngPoi nt er & oper at or =(const epi csR ngPoi nter &) ;

private: // Data

1
An epicsRingPointer cannot be assigned to, copy-constructed, or constructed without giving the size argument. The C++
compiler will object to some of the statements below:

epi csRi ngPoi nter rp0(); /1 Error: default constructor is private

epi csRi ngPoi nter rpl(10); // K

epi csRi ngPoi nter rp2(tl); // Error: copy constructor is private

epi csRi ngPoi nter *prp; /1 OK, pointer
*prp = rpl; /1 Error: assignnent operator is private
prp = & pil; /1 OK, pointer assignnent and address-of
Method Meaning
epicsRingPointer() Constructor. The size is the maximum number of elements (pointers) that can be stored in the
ring.

~epicsRingPointer() Destructor.

push() Push anew entry on thering. It returns (false,true) is (failure, success). Failure means the ring
was full. If asingle writer is present it does not have to use alock while performing the push. If
multiple writers are present they must use a common lock while issuing the push.

pop() Take aelement off thering. It returns O (null) if the ring was empty. If asingle reader is present it
does not have to lock while issuing the pop. If multiple readers are present they must use a
common lock while issuing the pop.

flush() Remove all elements from the ring. If this operation is performed then all accessto thering
should be locked.

getFree() Return the amount of empty spacein thering, i.e. how many additional elementsit can hold.
getUsed() Return the number of elements stored on the ring

getSize() Return the size of the ring, i.e. the value of size specified when the ring was created.
isEmpty() Returnstrueif thering is empty, else false.

isFull() Returnstrueif thering isfull, else false.

19.10.2 C interface

t ypedef void *epi csRi ngPoi nterld;
epi csRi ngPoi nterld epi csRi ngPoi nterCreate(int size);

266 EPICS Application Developer’'s Guide 1/5/09

Chapter 19: libCom
epicsTimer

voi d epi csRi ngPoi nt er Del et e(epi csRi ngPointerld id);
/*epi csRingPoi nterPop returns O if the ring was enpty */
void * epi csR ngPoi nt er Pop(epi csRi ngPointerld id) ;

[*epi csRi ngPoi nter Push returns (0,1) if p (was not, was) put on ring*/
i nt epi csRi ngPoi nt er Push(epi csRi ngPointerld id,void *p);
voi d epi csRi ngPoi nt er Fl ush(epi csRi ngPointerld id);

i nt epi csRi ngPoi nt er Get Free(epi csRi ngPointerld id);

i nt epi csRi ngPoi nt er Get Used(epi csRi ngPoi nterld id);

i nt epi csRi ngPoi nterCGetSi ze(epi csRingPointerlid id);

i nt epi csRi ngPoi nterl seEnpty(epicsRingPointerlid id);

i nt epi csRingPointerlsFull (epicsRi ngPointerld id);

Each C function corresponds to one of the C++ methods.

19.11 epicsTimer

epi csTi mer. h describes a C++ and a C timer facility.

19.11.1 C++ Interface

19.11.1.1 epicsTimerNotify and epicsTimer

class epicsTimerNotify {
publi c:
enumrestart _t { noRestart, restart };
cl ass expireStatus {
publi c:
expireStatus (restart_t);
expireStatus (restart_t, const double &expireDel aySec);
bool restart () const;
doubl e expirationDelay () const;
private:
doubl e del ay;
b
virtual ~epicsTinerNotify ();
/1 return noRestart OR return expireStatus (restart, 30.0 /* sec */);
virtual expireStatus expire (const epicsTime & currentTime) = 0;
virtual void show (unsigned int level) const;

b

cl ass epicsTimer {
publi c:
virtual void destroy () = 0; // requires existence of timer queue
virtual void start (epicsTimerNotify & const epicsTime &) = O;
virtual void start (epicsTimerNotify & double del aySeconds) = O;
virtual void cancel () = 0;
struct expirelnfo {
expirelnfo (bool active, const epicsTinme & expireTime);
bool active;
epi csTi me expireTi nme;

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 267

Chapter 19: libCom
epicsTimer

b

virtual expirelnfo getExpirelnfo () const = O;

doubl e get ExpireDelay ();

virtual void show (unsigned int level) const = O;
pr ot ect ed:

virtual ~epicsTiner () = 0; // use destroy

b

Method Meaning

epicsTimerNotify | Code using an epicsTimer must include a class that inherits from epicsTimerNotify. The derived
expire() class must implement the method expire(), which is called by the epicsTimer when the associated

timer expires. epicsTimerNotify defines a class expireStatus which makes it easy to implement
both one shot and periodic timers. A one-shot expire() returns with the statement:
return(noRestart);
A periodic timer returns with a statement like:
return(restart, 10.0);
whereis second argument is the delay until the next callback.

epicsTimer epicsTimer is an abstract base class. An epics timer can only be created by calling
cr eat eTi mer, which isamethod of epi csTi mer Queue.

destroy Thisis provided instead of a destructor. Thiswill automatically call cancel before freeing all
resources used by the timer.

start() Starts the timer to expire either at the specified time or the specified number of secondsin the
future. If the timer is already active when start is called, it isfirst canceled.

cancel() If thetimer is scheduled, cancel it. If it is not scheduled do nothing. Note that if the expire()
method is already running, this call delays until the expire() completes.

getExpirelnfo Get expi r el nf o, which saysif timer is active and if so when it expires.

getExpireDelay() Return the number of seconds until the timer will expire. If the timer is not active it returns

DBL_MAX
show() Display info about object.
19.11.1.2 epicsTimerQueue

cl ass epi csTi mer Queue {
publi c:

virtual epicsTimer & createTiner () = 0;

virtual void show (unsigned int level) const = O;
pr ot ect ed:

virtual ~epicsTi nerQeue () = 0;

1
Method Meaning
createTimer() Thisisa"factory" method to create timers which use this queue.
show() Display info about object

268 EPICS Application Developer’'s Guide

1/5/09

Chapter 19: libCom
epicsTimer

19.11.1.3 epicsTimerQueueActive

cl ass epi csTi mer QueueActive : public epicsTi ner Queue {
publi c:
static epicsTi ner QueueActive & allocate (
bool okToShare, unsigned threadPriority = epicsThreadPriorityMn + 10);
virtual void release () = 0;
pr ot ect ed:
virtual -~epicsTi ner QueueActive () = 0;

b

Method Meaning

allocate() Thisisa"factory" method to create atimer queue. If okToShare s (true,false) then a (shared,
separate) thread will manage the timer requests.If the okToShare constructor parameter is true
then if atimer queueis aready running at the specified priority then it will be referenced for
shared use by the application, and an independent timer queue will not be created. Editoria note:
It is useful for two independent timer queuesto run at the same priority if there are multiple
processors, or if there is an application with well behaved timer expire functions that needsto be
independent of applications with computationally intensive, mutex locking, or 1O blocking timer
expire functions.

release() Release the queue, i.e. the calling facility will no longer use the queue. The caller MUST ensure
that it does not own any active timers. When the last facility using the queue calls release, all
resources used by the queue are freed.

19.11.1.4 epicsTimerQueueNotify and epicsTimerQueuePassive

These two classes manage a timer queue for single threaded applications. Since it is single threaded, the application is
responsible for requesting that the queue be processed.

cl ass epicsTi mer QueueNotify {

public:
/1 called when a newtinmer is inserted into the queue and the
/1 delay to the next expire has changed
virtual void reschedule () = O;
/1 if there is a quantumin the scheduling of timer intervals
/1 return this quantumin seconds. |If unknown then return zero.
virtual double quantum () = O;

pr ot ect ed:
virtual ~epicsTi nerQeueNotify () = O;
b

cl ass epi csTi mer QueuePassi ve {
public:
static epicsTi ner QueuePassive & create (epicsTi ner QueueNotify &);
virtual -~epicsTi ner QueuePassive () = 0;
/1 process returns the delay to the next expire
virtual double process (const epicsTine & currentTinme) = O;

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 269

Chapter 19: libCom

epicsTimer
Method Meaning

epicsTimerQueueNotify The virtual function epicsTimerQueueNotify::reschedul &) is called when the delay to the next timer

reschedule() to expire on the timer queue changes.

epicsTimerQueueNotify The virtual function epicsTimerQueueNotify::quantum() returns the timer expire interval

quantum scheduling quantum in seconds. This allows different types of timer queues to use application
specific timer expire delay scheduling policies. The implementation of epicsTimerQueueActive
employs epicsThreadSleep() for this purpose, and therefore epicsTimerQueueActive::quantum()
returns the returned value from epicsThreadSleepQuantum(). Other types of timer queues might
choose to schedule timer expiration using specialized hardware interrupts. In this case
epicsTimerQueueNotify::quantum() might return a value reflecting the precision of a hardware
timer. If unknown, then epicsTimerQueueNotify::quantum() should return zero.

epicsTimerQueuePassive epicsTimerQueuePassive is an abstract base class so cannot be instantiated directly, but contains a
static member function to create a concrete passive timer queue object of a (hidden) derived class.

create() A "factory" method to create a non-threaded timer queue. The calling software al so passes an object
derived from epicsTimerQueueNatify to receive reschedule() callbacks.

~epicsTimerQueuePassive() | Destructor. The caller MUST ensure that it does not own any active timers, i.e. it must cancel any
active timers before deleting the epicsTimerQueuePassive object.

process() This calls expire() for al timersthat have expired. The facility that creates the queue MUST call
this. It returns the delay until the next timer will expire.

19.11.2 C Interface

typedef struct epicsTinerForC * epicsTinerld;
typedef void (*epicsTinerCallback) (void *pPrivate);

/* thread managed tinmer queue */
typedef struct epicsTi ner QueueActiveForC * epi csTi mer Queuel d;
epi csTi mer Queuel d epi csTi ner QueueAl | ocat e(

i nt okToShare, unsigned int threadPriority);
voi d epi csTi mer QueueRel ease (epi csTi mer Queuel d);
epi csTinerld epicsTi ner QueueCreateTi mer (epicsTi mer Queuel d queuei d,

epi csTi ner Cal | back cal | back, void *arg);

voi d epi csTi mer QueueDestroyTi ner (epicsTi ner Queueld queueid, epicsTinerld id);
voi d epi csTi mer QueueShow (epi csTi ner Queuel d id, unsigned int |evel);

/* passive tiner queue */
typedef struct epicsTi ner QueuePassi veForC * epi csTi mer QueuePassi vel d;
typedef void (*epicsTi mer QueueNoti fyReschedule) (void *pPrivate);
typedef double (* epicsTi mer QueueNoti fyQuantum) (void * pPrivate);
epi csTi ner QueuePassi vel d epi csTi mer QueuePassi veCr eat e(

epi csTi ner QueueNot i f yReschedul e, epi csTi mer QueueNot i f yQuant um

void *pPrivate);
voi d epi csTi mer QueuePassi veDestroy (epicsTi ner QueuePassi veld);
epi csTinerld epicsTi mer QueuePassi veCreat eTi mer (epi csTi ner QueuePassi vel d queuei d,

epi csTi ner Cal | back pCal | back, void *pArg);

voi d epi csTi mer QueuePassi veDestroyTi mer (

epi csTi ner QueuePassi vel d queueid, epicsTinmerld id);

270 EPICS Application Developer’'s Guide 1/5/09

Chapter 19: libCom
epicsTimer

doubl e epi csTi mer QueuePassi veProcess (epi csTi ner QueuePassi veld);

voi d epi csTi mer QueuePassi veShow epi csTi ner QueuePassi veld id, unsigned int |evel);
[* timer */

void epicsTinmerStartTi me(epicsTinmerld id, const epicsTineStanp *pTine);

voi d epicsTinmerStartDel ay(epicsTinmerld id, double del aySeconds);

voi d epicsTi mer Cancel (epicsTimerld id);

doubl e epi csTi mer Get Expi reDelay (epicsTinerld id);

voi d epicsTi mer Show (epicsTinerld id, unsigned int |evel);

The C interface provides most of the facilities as the C++ interface. It does not support the periodic timer features. The
typedefs epicsTimerQueueNotifyReschedule and epicsTimerQueueNotifyQuantum are the "C" interface equivalents to
epicsTimerQueueNotify:: reschedule() and epicsTimerQueueNotify::quantum().

19.11.3 Example

This example alocates atimer queue and two objects which have atimer that uses the queue. Each object is requested to
schedule itself. The expire() callback just prints the name of the object. After scheduling each object the main thread just
deeps long enough for each expire to occur and then just returns after releasing the queue.

#i ncl ude <stdio. h>
#i ncl ude "epi csTinmer. h"

class sonmething : public epicsTimerNotify {
public:
sonet hi ng(const char* nm epi csTi ner QueueActi ve &queue)
nane(nm, timer(queue.createTinmer()) {}
virtual ~sonething() { tiner.destroy();}
void start(double delay) {timer.start(*this,delay);}
virtual expireStatus expire(const epicsTime & currentTine) {
printf("%\n", nane);
current Ti ne. show(1) ;
return(noRestart);
)
private:
const char* nane;
epi csTiner &tinmer;

b
voi d epi csTi nmer Exanpl e()
{
epi csTi ner QueueActi ve &queue = epi csTi ner QueueActive: :allocate(true);
{
sonething first("first", queue);
sonet hi ng second("second", queue) ;
first.start(1.0);
second. start(1.5);
epi csThreadSl eep(2.0);
}
gueue. rel ease();
}

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 271

Chapter 19: libCom
epicsTimer

19.11.4 C Example

This example shows how C programs can use EPICS timers.

#i ncl ude <stdio. h>
#i ncl ude <epi csTi ner. h>
#i ncl ude <epi csThread. h>

static void
handl er (void *arg)

{
printf ("% tinmer tripped.\n", (char *)arg);
}
i nt
mai n(int argc, char **argv)
{

epi csTi ner Queuel d ti ner Queue;
epicsTinerld first, second

/*

* Create the queue of tiner requests

*/

ti mer Queue = epi csTi mer QueueAl | ocate(1, epi csThreadPri orityScanH gh);
/*

* Create the tinmers

*/

first = epicsTinmer QueueCreateTi ner(tinmerQueue, handler, "First");
second = epi csTi mer QueueCreat eTi ner (ti ner Queue, handl er, "Second");

/*
* Start a tinmer
*/
printf("First timer should trip in 3 seconds.\n");
epi csTinerStartDel ay(first, 3.0);
epi csThreadSl eep(5.0);
printf("First timer should have tripped by now. \n");

/*
* Try starting and then cancelling a request
*/
printf("Second timer should trip in 3 seconds.\n");
epi csTinerStartDel ay(first, 3.0);
epi csTi ner St art Del ay(second, 3.0);
epi csThreadSl eep(1.0);
epi csTi ner Cancel (first);
epi csThreadSl eep(5. 0);
printf("Second timer should have tripped, first timer should not have
tripped.\n");

/*
* Clean up a single tiner
*/

272 EPICS Application Developer’'s Guide 1/5/09

Chapter 19: libCom
fdmgr

epi csTi mer QueueDestroyTi mer (ti nmer Queue, first);

/*
* (Cean up an entire queue of tiners
*/
epi csTi mer QueueRel ease(ti ner Queue) ;
return O;

19.12 fdmgr

File Descriptor Manager. f dManager . h describes a C++ implementation. f dngr . h describes a C implementation.
Neither is currently documented.

19.13 freelist

freeLi st. h describes routines to alocate and free fixed size memory elements. Free elements are maintained on a
free list rather then being returned to the heap via callsto free. When it is necessary to call malloc(), memory is allocated
in multiples of the element size.

void freeListlnitPvt(void **ppvt, int size, int nmalloc);
void *freeListCalloc(void *pvt);

void *freeListMalloc(void *pvt);

void freelLi stFree(void *pvt, void*pnen);

voi d freelLi st eanup(void *pvt);

size t freeListltensAvail (void *pvt);

where

pvt - For internal use by the freelist library. Caller must provide storage for a"void * pvt
size - Size in bytes of each element. Note that all elements must be same size
nmalloc - Number of elements to allocate when regular malloc() must be called.

19.14 gpHash

gpHash. h describes a general purpose hash table for character strings. The hash table contains tableSze entries. Each
entry is alist of members that hash to the same value. The user can maintain separate directories which share the same
table by having a different pvt value for each directory.

typedef struct{

ELLNODE node;
const char *nane; /*address of name placed in directory*/
voi d *pvti d; [*private nanme for subsystem user*/
voi d *user Pvt ; [*private for user*/
} GPHENTRY;

/*tabl eSi ze nmust be power of 2 in range 256 to 65536*/
void gphlnitPvt(void **ppvt,int tableSize);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 273

Chapter 19: libCom
logClient

GPHENTRY *gphFi nd(voi d *pvt, const char *name,void *pvtid);
GPHENTRY *gphAdd(void *pvt, const char *nane,void *pvtid);
voi d gphDel ete(void *pvt,const char *nane,void *pvtid);
voi d gphFreeMem(void *pvt);

voi d gphDunp(void *pvt);

voi d gphDumpFP(FI LE *fp,void *pvt);

where

pvt - For internal use by the gpHash library. Caller must provide storage for a"void * pvt"
name - The character string that will be hashed and added to table.
pvtid - The name plus value of this pointer constitute a unique entry.

19.15 logClient

Together with the program iocLogServer this provides generic support for logging text messages from an 10C or other
program to afile on the log server host machine.

A log client runs on the I0C. It accepts string messages and forwards them over a TCP connection to its designated log
server (normally running on a host machine).

A log server accepts connections from multiple clients and writes the messagesiit receives into arotating file. A 1og server
program ('iocLogServer’) isaso part of EPICS base.

Configuration of the iocL ogServer, as well as the standard iocLogClient that internally uses this library, are described in
Section 10.7 on page 167.

The header file logClient.h exports the following types and routines:
typedef void *logCientld,
An abstract data type, representing alog client.

logClientld logQlientCreate (
struct in_addr server_addr, unsigned short server_port);

Create anew log client. Will block the calling task for a maximum of 2 seconds trying to connect to a server with the
given ip address and port. If a connection cannot be established, an error message is printed on the console, but the log
client will keep trying to connect in the background. Thisis done by a background task, that will also periodically (every
5 seconds) flush pending messages out to the server.

void logQientSend (logQientld id, const char *nessage);

Send the given message to the given log client. Messages are not immediately sent to the log server. Instead they are sent
whenever the cache overflows, or logClientFlush() is called.

void logdientFlush (logQientld id);
Immediately send al outstanding messages to the server.

void | ogCientShow (logOientld id, unsigned |evel);
Print information about the log clients internal state to stdout.

For backward compatibility with older versions of the logClient library, the header file also includes iocLog.h, which
exports the definitions for the standard iocLogClient for error logging. See Chapter 10.7.2.

Also for backward compatibility, the following deprecated routines are exported.

logCientld loglientlnit (void);

274 EPICS Application Developer’'s Guide 1/5/09

Chapter 19: libCom
macLib

Create a log client that uses the standard ioc log client environment variables (EPICS IOC LOG _INET and
EPICS 10C_LOG_PORT) as input to logClientCreate and also registers the log client with the errlog task using
errlogAddListener.

void |l ogd ient SendMessage (logCientld id, const char *nmessage);
Check the global variable iocLogDisable before calling logClientSend.

19.16 macLib

macLi b. h describes ageneral purpose macro substitution library. It is used for all macro substitution in base.

| ong macCr eat eHandl e(

MAC HANDLE **handl e, /* address of variable to receive pointer */
/* to new macro substitution context */
char *pairs[] [* pointer to NULL-term nated array of */

/* {name, val ue} pair strings; a NULL */
/* value inplies undefined; a NULL */
/* argument inplies no macros */

);
voi d nmacSuppr essWar ni ng(
MAC HANDLE *handl e, /* opaque handle */
i nt fal seTrue /*0 means ussue, 1 neans suppress*/

)

/[*follow ng returns #chars copied, <0 if any nmacros are undefined*/
 ong macExpandStri ng(

MAC HANDLE *handl e, /* opaque handle */

char *src, /* source string */

char *dest, /* destination string */

| ong max| en /* maxi mum nunber of characters to copy */

/* to destination string */

)

/[*following returns |ength of value */
| ong macPut Val ue(

MAC HANDLE *handl e, /* opaque handle */
char *nanme, /* macro nanme */
char *val ue /* macro val ue */

)

/*follow ng returns #chars copied (<0 if undefined) */
| ong macGCet Val ue(

MAC HANDLE *handl e, /* opaque handle */

char *nane, /* macro nane or reference */

char *val ue, /* string to receive nacro value or nanme */
[* argument if macro is undefined */

| ong max| en /* maxi mum nunber of characters to copy */

/* to value */

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 275

Chapter 19: libCom
misc

| ong macDel et eHandl e(MAC_HANDLE *handl e) ;
| ong macPushScope(MAC_HANDLE *handl e);

| ong macPopScope(MAC_HANDLE *handl e) ;

| ong nmacReport Macr os(MAC_HANDLE *handl e) ;

/* Function prototypes (utility library) */

/*followi ng returns #defns encountered; <0 = ERROR */
| ong macPar seDef ns(

MAC_HANDLE *handl e, /* opaque handl e; can be NULL if default */
/* special characters are to be used */

char *def ns, /* macro definitions in "a=xxx, b=yyy" */
[* format */

char **pairsf] /* address of variable to receive pointer */

/* to NULL-term nated array of {nane, */
/* value} pair strings; all storage is */
/* allocated contiguously */

)

/*followi ng returns #nacros defined; <0 = ERROR */
| ong macl nstal | Macr os(MAC_HANDLE *handl e,
char *pairs[] /* pointer to NULL-term nated array of */
/* {name, val ue} pair strings; a NULL */
/* value inplies undefined; a NULL */
/* argunment inplies no macros */

)
/*Expand string using environnent variables as macro definitions */
epi csShar eFunc char * /* expanded string; NULL if any undefined macros */
epi csShar eAPI macEnvExpand(
char *str /* string to be expanded */
)

NOTE: The directory <base>/src/libCom/macLib contains two files macLi bNOTES and nacLi bREADME that explain
thislibrary.

19.17 misc

19.17.1 aTol PAddr

The function prototype for this routine appearsin osi Sock. h

i nt aTol PAddr (const char *pAddrString, unsigned short defaultPort,
struct sockaddr _in *plP);

aTolPAddr() fills in the structure pointed to by the plP argument with the Internet address and port number specified by
the pAddr String argument.

Three forms of pAddrString are accepted:

276 EPICS Application Developer’'s Guide 1/5/09

Chapter 19: libCom
misc

1. n.n.n.nip
The Internet address of the host, specified as four numbers separated by periods.

2. XXXXXXXX:P
The Internet address number of the host, specified as a single number.

3. hostname:p
The Internet host name of the host.

In all cases the ‘:p’ may be omitted in which case the port number is set to the value of the defaultPort argument. All
numbers are read in base 16 if they begin with ‘Ox’ or ‘0X’, in base 8 if they begin with ‘0’, and in base 10 otherwise.

19.17.2 adjustment

adj ust ment . h describes asingle function:
size_t adjust ToWworst CaseAl i gnnment (size_t size);

adjustToWorstCaseAlignment() returns a value >= size that an exact multiple of the worst case alignment for the
architecture on which the routine is executed.

19.17.3 cantProceed

cant Pr oceed. h describes routines that are provided for code that can’t proceed when an error occurs.

voi d cant Proceed(const char *errorMessage);
voi d *cal | ocMust Succeed(size_t count, size_t size,const char *errorMessage);
void *mal | ocMust Succeed(si ze_t size, const char *errorMessage);

cantProceed() issues the error message and suspends the current task - it will never return. callocMustSucceed() and
mallocMustSucceed() can be used in place of cal | oc() and mal | oc() . If size or count are zero, or the memory
allocation fails, they output a message and call cantProceed().

19.17.4 dbDefs

dbDef s. h contains definitions that are still used in base but should not be. Hopefully these all go away some day. This
has been the hope for about ten years.

19.17.5 epicsConvert

epi csConvert . h currently describes:
fl oat epi csConvert Doubl eToFl oat (doubl e val ue);

epi csConvert Doubl eToFl oat converts a double to a float. If the double value can not be represented as a float
then the assigned valueis+-FLTMIN or +- FLT_MAX. A floating exception is never raised.

19.17.6 epicsString

epi csString. h currently describes:

i nt dbTransl at eEscape(char *dst, const char *src);
int epicsStrCaseCmp(const char *sl1l, const char *s2);
i nt epicsStrnCaseCnp(const char *sl1, const char *s2, int n);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 277

Chapter 19: libCom
misc

char *epicsStrDup(const char *s);
int epicsStrPrintEscaped(FILE *fp, const char *s, int n);
i nt epicsStrSnPrint Escaped(char *outbuf, int outsize,
const char *inbuf,int inlen);
int epicsStrd obMatch(const char *str, const char *pattern);
char *epicsStrtok_r(char *s, const char *delim char **lasts);

dbTr ansl at eEscape copies the string src to dst while substituting escape sequences. It returns the length of the
resultant string (which may contain null bytes). The caller must ensure that the buffer dst is large enough, but the
destination string can never be longer than the source and it is legal for dst and src to be the same and thus perform
tranglations in-place.

epi csStr CaseCnp and epi csSt r nCaseCnp implement st r casecnp and st r ncasecnp, respectively, which
are not available on all operating systems. They operate likest r cnp and st r ncnp, but are case insensitive.

epi csSt r Dup implements st r dup, which is not available on all operating systems. It allocates sufficient memory for
acopy of the string s, does the copy, and returns a pointer to it. The pointer may subsequently be used as an argument to
the function free(). If insufficient memory is available cantProceed() is called.

epi csStrPrint Escaped prints the contents of buffer substituting C-style escape sequences for non printable
characters. In a sense it is the opposite of dbTranslateEscape. epi csStr SnPri nt Escaped performs the same
substitutions but stores the result in the specified output buffer. It returns the number of characters stored in the output
buffer or a value greater than or equal to out si ze if the output has been truncated to fit in the specified size. The
following non-printable characters are printed as C-style character constants:

"\a', "\b', C\f', A, At Nt A, AT T A
All other non-printable characters are printed as:

"\ ooo0’
Where 000 comprises three octal digits (0-7).
epi csSt r @ obMat ch returns non-zero if the str matches the shell wild-card pattern.

epi csStrtok_r implementsst rt ok_r, whichisnot available on all operating systems.

19.17.7 epicsTypes
epi csTypes. h provides typedefs for architecture independent data types.

t ypedef char epi csl nt 8;

t ypedef unsi gned char epi csUl nt 8;

t ypedef short epi csl nt 16;

t ypedef unsi gned short epicsU nt16;
t ypedef epicsU nt16 epi csEnuml6;
t ypedef int epi csl nt 32;

t ypedef unsi gned epi csUl nt 32;
t ypedef fl oat epi csFl oat 32;
t ypedef doubl e epi csFl oat 64;
t ypedef unsigned | ong epi csl ndex;

t ypedef epicslnt32 epi csSt at us;

So far the definitions provided in this header file have worked on all architectures. In addition to the above definitions
epi csTypes. h hasanumber of definitions for displaying the types and other useful definitions. See the header file for
details.

278 EPICS Application Developer’'s Guide 1/5/09

Chapter 19: libCom
misc

19.17.8 locationException

A C++ template for use as an exception object, used inside Channel Access. Not documented here.

19.17.9 shareLib.h

Thisisthe header file for the "decorated names" that appear in header files, e.g.

#def i ne epi csExport Shar edSynbol s
epi csShar eFunc int epicsShareAPl a_func(int arg);

Thse are needed to properly create DLLs on windows. Read the commentsin the shareLib.h file for a detailed description
of where they should be used. Note that the epi csShar eAPI decorator is deprecated for all new EPICS APIs and is
being removed from APIs that are only used within the IOC.

19.17.10 truncateFile.h

enum TF_RETURN { TF_OK=0, TF_ERROR=1};
TF_RETURN truncateFil e (const char *pFileName, unsigned size);

where
pFileName - name (and optionally path) of file

truncateFile() truncates the file to the specified size. truncate() is not used because it is not portable. It returns TF_OK if
thefileisless than size bytes or if it was successfully truncated. It returns TF_ERROR if the file could not be truncated.

19.17.11 unixFileName.h
Defines macros OSl_PATH_LIST_SEPARATOR and OS|_PATH_SEPARATOR

19.17.12 epicsUnitTest.h

The unit test routines make it easy for atest program to generate output that is compatible with the Test Anything Protocol
and can thus be used with Perl’s automated Test::Harness as well as generating human-readable output. The routines
detect whether they are being run automatically and print a summary of the results at the end if not.

voi d testPlan(int tests);

int testOk(int pass, const char *fmt, ...);
#define test Ckl(cond) testk(cond, "%", #cond)
voi d testPass(const char *fnt, ...);

void testFail (const char *fnt, ...);

int testOkV(int pass, const char *fnt, va_list pvar);
voi d testSkip(int skip, const char *why)

voi d test TodoBegi n(const char *why);

voi d test TodoEnd();

int testDi ag(const char *fnt, ...);

voi d testAbort(const char *fm, ...);

int testDone(void);

typedef int (*TESTFUNC) (void);
epi csShar eFunc voi d test Harness(voi d);
epi csShar eFunc voi d runTest Func(const char *nane, TESTFUNC func);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 279

Chapter 19: libCom
misc

#define runTest (func) runTest Func(#func, func)

A test program starts with a call to testPlan(), announcing how many tests are to be conducted. If this number is not
known a value of zero can be used during development, but it is recommended that the correct value be substituted after
the test program has been compl eted.

Individual test results are reported using any of testOk(), testOk1(), testOkV (), testPass() or testFail(). The testOk() call
takes and also returns a logical pass/fail result (zero means failure, any other value is success) and a printf-like format
string and arguments which describe the test. The convenience macro testOk1() is provided which stringifies its single
condition argument, reducing the effort needed to write test programs. The individual testPass() and testFail() routines can
be used when the test program takes a different path on success than on failure. The testOkV () routine is avarargs form of
testOk() included for internal purposes which may prove useful in some cases.

If some program condition or failure makes it impossible to run some tests, the testSkip() routine can be used to indicate
how many tests are being omitted from the run, thus keeping the test counts correct; the constant string why is displayed
as an explanation to the user (this string is not printf-like).

If some tests are expected to fail because functionality in the module under test has not yet been implemented, these tests
should still be executed, wrapped between calls to testTodoBegin() (which takes a constant string indicating why these
tests are not expected to succeed) and testTodoEnd(). This modifies the counting of the results so these tests will not be
recorded as failures.

Additional information can be supplied using the testDiag() routine, which displays the relevent information as a
comment in the result output. None of the strings passed to any testXxx() routine should contain anewline’\n’ character,
newlines will be added by the test routines as part of the Test Anything Protocol. For multiple lines of diagnostic output,
call testDiag() as many times as necessary.

If at any time the test program is unable to continue for some catastrophic reason, calling testAbort() with an appropriate
message will ensure that the test harness understands this; testAbort() does not return, but callsthe ANSI C routine abort()
to cause the program to stop immediately.

After al of the tests have been completed, the return value from testDone() can be used as the return status code from the
program’s main() routine.

On vxWorksand RTEMS, an alternative test harness can be used to run a series of testsin order and summarize the results
from them al at the end just like the Perl harness does. The routine testHarness() is called once a the beginning of the test
harness program. Each test program is run by passing its main routine name to the runTest() macro which expands into a
call to the runTestFunc() routine. The last test program or the harness program itself must finish by calling epicsExit()
which triggers the test summary mechanism to generate its result outputs (from an epicsAtExit callback routine).

To makeit easier to create a single test program that can be built for both the embedded and workstation operating system
harnesses, the header filet est Mai n. h provides a convenience macro MAIN() that adjusts the name of the test program
according to the platform it is running on, main() on workstations and a regular function name on embedded systems.

Thefollowing is a simple example of atest program using the epicsUnitTest routines:

#i ncl ude <mat h. h>
#i ncl ude "epi csUnit Test. h"
#i ncl ude "test Mai n. h"

MAI N(mat hTest)
{
test Pl an(3);
test Ck(sin(0.0) == 0.0, "Sine starts");
test Ck(cos(0.0) == 1.0, "Cosine continues");
if ('testk1(MPI == 4.0*atan(1.0)))
testDi ag("4*atan(1l) = %", 4.0*atan(1.0));

280 EPICS Application Developer’'s Guide 1/5/09

Chapter 19: libCom

misc
return testDone();
}
The output from running the above program looks like this:
1..3
ok 1 - Sine starts
ok 2 - Cosine continues
ok 3 - MPI == 4. 0*atan(1.0)
Results
Tests: 3
Passed: 3 = 100%
281

EPICS Release 3.14.10 EPICS Application Developer’'s Guide

Chapter 19: libCom
misc

282 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: [ibCom OSI libraries

20.1 Overview

Most code in base is operating system independent, i.e. the code is exactly the same for all supported operating systems.
Thisis accomplished by providing epics defined libraries for facilities that are different on the various systems. The code
is called Operating System Independent or OSI. OSl libraries have multiple implementations, which are Operating
System Dependent or OSD.

20.1.1 OSl sourcedirectory

Directory <base>/ src/ | i bConl osi contains the code for the operating system independent libraries. The structure
of thisdirectory is:

osi/

epi cs*. h

*.cpp - A few generic c++ inplenentations

os/
Li nux/
Dar wi n/
RTEMS/
W N32/
defaul t/
posi x/
sol ari s/
vxWor ks/

Code for additional operating systems may also be present.

20.1.2 Rulesfor building OSl code

The osi directory contains header files with names starting with epi ¢s. These headers provide definitions for user code.
Each of the directories under osi / <ar ch> contain architecture-specific code in filenames starting with osd. In most
cases both a header and source file are present.

Installing header filesresiding under sr ¢/ | i bCom osi into<base>/i ncl ude

» Header filesin osi areinstalled into <base>/ i ncl ude
» Header files in a subdirectory below osi / os are installed into <base>/ i ncl ude/ os/ <ar ch>. The search
order for locating the specific fileto beinstalled is:

e li bConf osi / os/ <arch>
e |i bCom osi/ os/ posi x
e |ibCom osi/os/default

The search order for locating osd sourcefilesis:

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 283

Chapter 20: libCom OSl libraries
epicsAssert

e | i bConi osi / os/ <ar ch>
* | i bCom osi/ os/ posi x
e | i bCom osi/os/default

20.1.3 Locating OSI header files.

When code is compiled the search order for locating header filesin base/ i ncl ude is:

» <base>/i ncl ude/ os/ <arch>
» <base>/i ncl ude

20.2 epicsAssert

Thisisareplacement for ANSI C'sassert . To usethisversion just include:
#i ncl ude "epicsAssert.h"

instead of
#i ncl ude <assert. h>

If anassert fails,itcalserr| og indicating the program’s author, file name, and line number. Under each OS there are
specialized instructions assisting the user to diagnose the problem and generate a good bug report. For instance, under
vxXWorks, there are instructions on how to generate a stack trace, and on posix there are instructions about saving the core
file. After printing the message the calling thread is suspended.

An author may, before the above include line, optionally define a preprocessor macro named epi csAsser t Aut hor asa
string that provides their name and email address if they wish to be contacted when the assertion fires.

20.3 epicsEndian

epi csEndi an. h provides an operating-system independent means of discovering the native byte order of the CPU
which the compiler is targeting, and works for both C and C++ code. It defines the following preprocessor macros, the
values of which are integers:

* EPICS ENDIAN_LITTLE

+ EPICS_ENDIAN_BIG

* EPICS BYTE_ORDER

» EPICS FLOAT_WORD_ORDER

The latter two macros are defined to be one or other of the first two and may be compared with them to determine
conditional compilation or execution of code that performs byte or word swapping as necessary.

20.4 epicsEvent

epi csEvent . h containsa C++ and a C description for an event semaphore.

284 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries

epicsEvent
20.4.1 C++ Interface
t ypedef enum {
epi csEvent Wi t OK, epi csEvent Wi t Ti neout, epi csEvent Wai t Err or
} epi csEvent WAi t St at us;
t ypedef enum {epi csEvent Enpty, epi csEvent Ful |} epi csEventlnitial State;
cl ass epi csEvent{
public:
epi csEvent (epi csEventlnitial State initial =epi csEvent Enpty);
~epi csEvent () ;
void signal ();
void wait(); /*blocks until full*/
bool wait(double tineQut); /* false if enpty at tine out */
bool trywait(); /* false if enmpty */
voi d show(unsigned level) const;
class invalidSemaphore {}; /* exception */
private:
1
Method M eaning
epicsEvent An epicsEvent can be created empty or full. If it is created empty then await issued
before a signal will block. If created full then the first wait will always succeed.
Multiple signals may be issued between waits but have the same effect asasingle
signal.
~epicsEvent Remove the event and any resourcesit uses. Any further use of the semaphore result in
unknown (most certainly bad) behavior. No outstanding take can be active when this
cal ismade.
signa Signal the event i.e. ensures that the next or current call to wait completes.
This method may be called from a vxWorks or RTEMS interrupt handler.
wait() Wait for the event.
wait(double Similar to wait except that if event does not happen the call completes after the
timeOut) specified time out. The return valueis (false,true) if the event (did not, did) happen.
tryWait() Similar to wait except that if event does not happen the call completesimmediately.
Thereturn valueis (false,true) if the event (did not, did) happen.
show Display information about the semaphore. The information displayed is architecture
dependent.

The primary use of an event semaphore is for synchronization. An example of using an event semaphore is a consumer
thread that processes requests from one or more producer threads. For example:

» When creating the consumer thread also create an epicsEvent.
epi csEvent *pevent = new epi csEvent;

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 285

Chapter 20: libCom OSl libraries
epicsFindSymbol

» The consumer thread has code containing:
while(1l) {
pevent ->wait();
whil e(/*nore work*/) {
[*process wor k*/
}
}
* Producers create requests and issue the statement:
pevent - >si gnal () ;

20.4.2 C Interface

t ypedef struct epi csEvent OSD *epi csEventld;

epi csEvent 1 d epi csEvent Create(epi csEventlnitial State initial State);

epi csEvent 1 d epi csEvent Must Create (epicsEventlnitial State initial State);

voi d epi csEvent Destroy(epi csEventld id);

voi d epi csEvent Si gnal (epi csEventld id);

epi csEvent Wi t St at us epi csEvent Wai t (epi csEventid id);

voi d epi csEvent Must Wai t (epi csEventid id);

epi csEvent Wi t St at us epi csEvent Wi t Wt hTi neout (epi csEventld id, double tinmeQut);
epi csEvent Wi t St at us epi csEvent TryWai t (epi csEventld id);

voi d epi csEvent Show(epi csEventld id, unsigned int |evel);

Each C routine corresponds to one of the C++ methods. epi csEvent Must Cr eat e and epi csEvent Must Vi t do
not return if they fail.

20.5 epicsFindSymbol

epi csFi ndSynbol . h contains the following definition:

void * epi csFi ndSynbol (const char *nane);

Method Meaning

epicskindSymbol Return the address of the variable name

vxXWorks provides a function symFindByName, which finds and returns the address of global variables. The registry,
described in the next chapter, provides an aternative but also requires extra work by iocCore and/or user code. If the
registry is asked for a name that has not been registered, it calls epicsFindSymbol. If epicsFindSymbol can locate the
global symboal it returns the address, otherwise it returns null.

On vxWorks epicsFindSymbol calls symFindByName.

A default version just returns null, i.e. it always fails.

286 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries
epicsGeneralTime

20.6 epicsGeneral Time

The genera Time framework provides a mechanism for several time providers to be present within the system. There are
two types of provider, one type for the current time and one type for providing Time Event times. Each time provider has
apriority, and installed providers are queried in priority order whenever atimeisrequested, until one returns successfully.
Thus there is afallback from higher priority providers (smaller value of priority) to lower priority providers (larger value
of priority) if the higher priority onesfail. Each architecture has a"last resort" provider, installed at priority 999, usually
based on the system clock, which is used in the absence of any other provider.

Targets running vxWorks and RTEM S have an NTP provider installed at priority 100.

There are two interfaces to this framework, epicsGeneral Time.h for consumers that wish to get a time and query the
framework, and general TimeSup.h for providers that supply timestamps.

20.6.1 Consumer interface

epi csGener al Ti me. h contains the following:

void general Tinme_lnit(void);

int install LastResortEventProvider(void);
voi d general Ti mreReset Error Count s() ;

i nt general Ti mreGet Error Counts();

const char * general Ti meCurrent TpNanme(voi d) ;
const char * general Ti neEvent TpNane(voi d);

| ong general Ti meReport (int interest);

M ethod M eaning
genera Time_Init Initialise the framework.
Thisis caled automatically by any function that requires the framework. It does not need to be
called explicitly.

installLastResortEventProvider | Install a Time Event time provider that returns the current time for any Time Event number.
Thisisoptiona asit is site policy whether the last resort for a Time Event time in the absence of
any working provider should be afailure, or the current time.

general TimeResetErrorCounts | Reset the internal counter of the number of times the time returned was earlier than when
previoudly requested.
Used by device support for bo record with DTY P ="General Time" OUT ="@RSTERRCNT"

genera TimeGetErrorCounts Return the internal counter of the number of times the time returned was earlier than when
previously requested.
Used by device support for longin record with DTY P = "General Time" INP =
"@GETERRCNT"

general TimeCurrentTpName Return the name of the provider that last returned avalid current time, or NULL if none.
Used by device support for stringin record with DTYP = "General Time" INP="@BESTTCP"

general TimeEventTpName Return the name of the provider that last returned avalid Time Event time, or NULL if none.
Used by device support for stringin record with DTY P = "General Time" INP="@BESTTEP"

genera TimeReport Provide information about the installed providers and their current best times.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 287

Chapter 20: libCom OSl libraries
epicsGeneralTime

20.6.2 Provider Interface

gener al Ti meSup. h contains the followi

typedef int (*TlI MECURRENTFUN) (epi csTi neStanp *pDest);
typedef int (*TlI MEEVENTFUN) (epi csTi neStanp *pDest, int event);
i nt general Ti neCurrent TpRegi ster(const char *nane, int priority,
TI MECURRENTFUN get Current);
i nt general Ti neEvent TpRegi ster(const char *nane, int priority,
TI MEEVENTFUN get Event) ;
i nt general Ti neGet ExceptPriority(epicsTineStanp *pDest, int *pPriority,
int ignore_priority);
epi csTinerld general Ti neCreat eSyncTi ner (epi csTi ner Cal | back ch, void *param;

Method Meaning

genera TimeCurrentTpRegi ster Register a current time provider with the framework. The getCurrent routine must
return epicsTimeOK if it provided avalid time, or epicsTimeERROR if it could not.

genera TimeEventTpRegister Register aprovider of Time Event times with the framework. The getEvent routine
must return epicsTimeOK if it provided avalid time for the requested Time Event, or
epicsTimeERROR if it could not.

It is an implemetation decision in the provider whether the time returned for a Time
Event that has never happened is valid or not.

genera TimeGetExceptProirity Request the current time from the framework, but exclude providers with priority
ignore_priority.

This allows providers to synchronise themselves with other higher priority providers.
pPriority returns the priority of the provider that supplied the result, which may be
higher or lower than ignore_priority.

general TimeCreateSyncTimer Helper routine to create an epicsTimer on a common high priority timer queue, which
may be used for periodic synchronisation.

If two providers are registered at the same priority number, the first-installed one will be preferred, athough the other will
still be queried if the first is unable to provide the time when requested.

Some providers may start a task that periodically synchronizes themselves with a higher priority provider, using
genera TimeGetExceptPriority to ensure that they are themselves excluded from this time request.

20.6.3 Internal Interface

The general Time framework also now provides the implementations of epicsTimeGetCurrent() and epicsTimeGetEvent().
If epicsTimeGetEvent() is called with an event number of O (epicsTimeEventCurrentTime) then it will get the time from
the best available current time provider. Thus providers do not need to provide event times if they do not implement an
event system.

20.6.4 Example

Soft device support is provided for ai, bo, longin and stringin records. A typical exampleis:

record(ai, "$(10OC) : GIl M_CURTI ME") {
fiel d(DESC, "Get Tine")

288 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries
epicsinterrupt

fiel d(DTYP, "Ceneral Tine")
field(INP, "@l ME")
}

record(bo, "$(10CC) : GIl M RSTERR') {
fiel d(DESC, "Reset ErrorCounts")
fiel d(DTYP, "Ceneral Tine")
fiel d(OUT, "@RSTERRCNT")

}

record(longin, "$(10C):GIl M ERRCNT") {
fiel d(DESC, "GCet ErrorCounts")
fiel d(DTYP, "Ceneral Tine")
field(I NP, "@BETERRCNT")

}

record(stringin, "$(10C:GTl M BESTTCP") {
fiel d(DESC, "Best Tinme-Current-Provider")
fiel d(DTYP, "Ceneral Tine")
field(INP, "@BESTTCP")

}

record(stringin, "$(10C): GIl M BESTTEP") ({
fiel d(DESC, "Best Tine-Event-Provider")
fiel d(DTYP, "Ceneral Tine")
field(INP, "@BESTTEP")

}

20.7 epicsl nterrupt

epi csl nt errupt . h contains the following:

20.7.1 C Interface

i nt epicslnterruptLock();
voi d epicslnterruptUnl ock(int key);
int epicslinterruptlslnterruptContext();

voi d epi csl nt errupt Cont ext Message(const char *nessage);

EPICS Release 3.14.10 EPICS Application Developer’'s Guide

289

Chapter 20: libCom OSl libraries

epicsMath
Method Meaning
epicsinterruptL ock Lock interrupts and return a key to be passed to
epicsinterruptUnlock
To lock the following is done.
int key;
key = epicsinterruptL ock();
epicsinterruptUnlock(key);
epicslnterruptUnlock Unlock interrupts.
epicsinterruptlsinterruptContext | Return (true, false) if current context isinterrupt context.
epicslnterruptContextM essage Generate a message while interrupt context is true.

20.7.2 Implementation notes

A vxWorks specific version is provided. It maps directly to intLib calls.
An RTEMS version is provided that mapsto rtems_ cals.

A default version is provided that uses agloba semaphoreto lock. Thisversion isintended for operating systemsin which
iocCore will run asamulti threaded process. The global semaphore is thus only global within the process. Thisversionis
intended for use on all except real time operating systems.

The vxWorks implementation will most likely not work on symmetric multiprocessing systems.
The reason epicslnterrupt is needed is:

+ callbackRequest and scanOnce can be issued from interrupt level.
» Theerrlog routines can be called while at interrupt level.

20.8 epicsMath

epi csMat h. h includesmat h. h and also ensuresthat i snan andi si nf are defined.

20.9 epicsMessageQueue

epi csMessageQueue. h describesa C++ and a C facility for interlocked communication between threads.

20.9.1 C++ Interface

EpicsMessageQueue provides methods for sending messages between threads on afirst in, first out basis. It is designed
so that a message queue can be used with multiple writer and reader threads

290 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries
epicsMessageQueue

cl ass epi csMessageQueue {
publi c:
epi csMessageQueue(unsi gned int capacity, unsigned int maxi mumvessageSi ze);
~epi csMessageQueue() ;
bool trySend(void *nessage, unsigned int nmessageSi ze);
bool send(void *message, unsigned int nessageSi ze);
bool send(void *message, unsigned int nessageSi ze, double tinmeout);
int tryReceive(void *nmessage, unsigned int nessageBufferSize);
int receive(void *message, unsigned int nessageBufferSize);
int receive(void *message, unsigned int nessageBufferSize, double tinmeout);
void show(int |evel) const;
i nt pending() const;

private: // Prevent conpiler-generated nenber functions
/1 default constructor, copy constructor, assignment operator
epi csMessageQueue() ;
epi csMessageQueue(const epi csMessageQueue &) ;
epi csMessageQueue& oper at or =(const epi csMessageQueue &) ;

private: // Data

1
An epicsMessageQueue cannot be assigned to, copy-constructed, or constructed without giving the capacity and
maximumMessageS ze arguments. The C++ compiler will object to some of the statements below:

epi csMessageQueue ngo(); /1 Error: default constructor is private

epi csMessageQueue ngl(10, 20); // XK

epi csMessageQueue mg2(t1l); // Error: copy constructor is private

epi csMessageQueue *pny; /1 OK, pointer

*pmg = mgl; /1 Error: assignnent operator is private

pmg = &mMl; /1 OK, pointer assignnent and address-of
Method Meaning

epicsM essageQueue() Constructor. The capacity is the maximum number of messages, each containing O to
maximumM essageSi ze bytes, that can be stored in the message queue.

~epicsMessageQueue() | Destructor.

trySend() Try to send amessage. Return O if the message was sent to areceiver or queued for future
delivery. Return -1 if no more messages can be queued or if the message is larger than the
gueue's maximum message Size.

This method may be called from avxWorks or RTEMS interrupt handler.

send() Send amessage. Return O if the message was sent to areceiver or queued for future delivery.
Return -1 if the timeout, if any, was reached before the message could be sent or queued, or if the
message is larger than the queue’s maximum message size.

tryReceive() Try to receive amessage. |If the message queue is non-empty, the first message on the queue is
copied to the specified location and the length of the message isreturned. Returns-1if the
message queue is empty. If the pending message is larger than the specified messageBufferSize
it may either return -1, or truncate the message. It ismost efficient if the messageBufferSizeis
equal to the maximumM essageSi ze with which the message queue was created.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 291

Chapter 20: libCom OSl libraries

epicsMutex
M ethod M eaning

receive() Wait until amessage is sent and storeiit in the specified location. The number of bytes in the
message isreturned. Returns-1 if amessage is not received within the timeout interval. If the
received message is larger than the specified messageBufferSize it may either return -1, or
truncate the message. Itis most efficient if the messageBufferSize is equal to the
maximumM essageSize with which the message queue was created.

show() Displays some information about the message queue. The level argument controls the amount of
information dispalyed.

pending() Returns the number of messages presently in the queue.

20.9.2 Cinterface

typedef void *epi csMessageQueuel d;
epi csMessageQueuel d epi csMessageQueueCr eat e(unsi gned int capacity,
unsi gned i nt nmaxi nunvessagesSi ze) ;
voi d epi csMessageQueueDest roy(epi csMessageQueuel d) ;
i nt epi csMessageQueueTrySend(epi csMessageQueuel d, void *, unsigned int);
i nt epi csMessageQueueSend(epi csMessageQueueld, void *, unsigned int);
i nt epi csMessageQueueSendW t hTi neout (epi csMessageQueuel d, void *, unsigned int,
doubl e) ;
i nt epi csMessageQueueTryRecei ve(epi csMessageQueuel d, void *, unsigned int);
i nt epi csMessageQueueRecei ve(epi csMessageQueuel d, void *, unsigned int);
i nt epi csMessageQueueRecei veW t hTi meout (epi csMessageQueuel d, voi d*,
unsi gned int, double);
voi d epi csMessageQueueShow epi csMessageQueuel d) ;
i nt epi csMessageQueuePendi ng(epi csMessageQueuel d) ;

Each C function corresponds to one of the C++ methods.

20.10 epicsMutex

epi csMut ex. h contains both C++ and C descriptions for amutual exclusion semaphore.

20.10.1 C++ Interface

t ypedef enum {
epi csMut exLockOK, epi csMut exLockTi neout, epi csMut exLockEr r or
} epi csMut exLockSt at us;
cl ass epi csMutex {
public:
epi csMutex ();
~epi csMutex ();
void lock (); /* blocks until success */
bool tryLock (); /* true if successful */
void unl ock ();
voi d show (unsigned | evel) const;

292 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries

epicsMutex
cl ass invalidSemaphore {}; /* exception */
private:
1
Method M eaning
epicsMutex Create amutua exclusion semaphore.
~epicsM utex Remove the semaphore and any resources it uses. Any further use of the semaphore
result in unknown (most certainly bad) results.
lock() Wait until the resourceisfree. After asuccessful lock additional, i.e. recursive, locks of
any type can be issued but each must have an associated unlock.
tryLock() Similar to lock except that, if the resource is owned by another thread, the call
completesimmediately. The return valueis (falsetrue) if the resource (isnot, is) owned
by the caller.
unlock Release the resource. If athread issues recursive locks, there must be an unlock for
each lock
show Display information about the semaphore. The results are architecture dependent.

Mutual exclusion semaphores are for situations requiring mutually exclusive access to resources. A mutual exclusion
semaphore may be taken recursively, i.e. can be taken more than once by the owner thread before releasing it. Recursive
takes are useful for a set of routines that call each other while working on a mutually exclusive resource.

Thetypical use of amutual exclusion semaphoreis:

epi csMut ex *pl ock = new epi csMit ex;

pl ock->l ock();
/* process resource */
pl ock->unl ock() ;

20.10.2 C Interface
typedef struct epi csMut exOSD* epi csMut exl d;

epi csMut exl d epi csMut exCreat e(voi d) ;

epi csMut exl d epi csMut exMust Create (void);

voi d epi csMut exDestroy(epi csMutexld id);

voi d epi csMut exUnl ock(epi csMutexl d id);

epi csMut exLockSt at us epi csMut exLock(epi csMutexld id);

voi d epi csMut exMust Lock(epi csMutexld id);

epi csMut exLockSt at us epi csMut exTryLock(epi csMutexl d id);
voi d epi csMut exShow(epi csMutexld id,unsigned int |evel);
voi d epi csMut exShowAl | (i nt onl yLocked, unsi gned int |evel);

Each C routine corresponds to one of the C++ methods. epi csMut exMust Cr eat e and epi csMut exMust Lock do
not return if they fail.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 293

Chapter 20: libCom OSl libraries
epicsStdlib

20.10.3 Implementation Notes

The implementation:

e Must implement recursive locking
» May implement priority inheritance and be deletion safe

A posix version isimplemented via pthreads.

20.11 epicsStdlib

epicsStdlib.h includes stdlib.h and contains definitions for the following functions/macros.

doubl e epicsStrtod(const char *str, char **endp);
i nt epi csScanFl oat (const char *str, float *dest);
i nt epi csScanDoubl e(const char *str, double *dest);

epi csStrtod hasthe same semantics as the C99 function st rt od. It is provided because some architectures have
implementations which do not accept NAN or INFINITY. On architectures which provide an acceptable version of
st rt od thisisimplemented as a simple macro expansion.

epi csScanFl oat and epi csScanDoubl e behave like sscanf witha" 9% " and " % f " format string, respectively.
They are provided because some architectures have implementations of scanf which do not accept NAN or INFINITY.

20.12 epicsStdio

epicsStdio.h contains definitions for the following functions.

int epicsSnprintf(char *str, size t size,
const char *format, ...);
int epicsVsnprintf(char *str, size t size,
const char *format, va list ap);
voi d epi csTenpNane(char * pNaneBuf, size_t nanmeBuflLength);
FI LE * epi csShareAPl epicsTenpFile ();
enum TF_RETURN { TF_OK=0, TF_ERROR=1};
enum TF_RETURN truncat eFi | e(const char *pFil eNane, unsigned size);

FILE * epicsGetStdin(void);

FI LE * epi csCet St dout (voi d);

FILE * epicsCGetStderr(void);

FI LE * epicsGet ThreadStdi n(voi d);
FI LE * epi csGet ThreadSt dout (voi d);
FI LE * epicsGet ThreadStderr(void);

voi d epi csSet ThreadStdi n(FILE *);

voi d epi csSet ThreadSt dout (FI LE *);

voi d epi csSet ThreadStderr (FILE *);

int epicsStdoutPrintf(const char *pformat, ...);

epi csSnprintf andepi csVsnpri ntf are meant to have the same semantics as the C99 functionssnpri nt f and
vsnprintf. They are provided because some architectures do not implement these functions, while others do not
implement the correct semantics. If you haven't heard of these C99 functions, snpri nt f islikespri nt f except that

294 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries
epicsStdioRedirect

thesi ze argument gives the maximum number of characters (including the trailing zero byte) that may be placed inst r .
Similarly vsnpri nt f is a size-limited version of vspri nt f. In both cases the return value is supposed to be the
number characters (not counting the terminating zero byte) that would be written to st r if it was large enough to hold
them al; the output has been truncated if the return valueissi ze or more.

On some operating systems the implementations of these functions may not always return the correct value. If the OS
implementation does not correctly return the number of characters that would have been written when the output gets
truncated, it is not worth trying to fix this as long as both return si ze- 1 instead; the resulting string must always be
correctly terminated with a zero byte.

Operating systems such as Solaris which follow the Single Unix Specification V2, epi csSnprintf and
epi csVsnpri ntf do not provide correct C99 semantics for the return value when si ze is given as zero. On these
systems epi csSnpri ntf and epi csVsnpri ntf may return an error (a value less than zero) if a buffer length of
zero ispassed in, so callers should not use that technique.

epi csTenpNane and epi csTenpFi | e can be called to get unique filenames and files.

truncat eFi | e returns TF_OK if thefileis lessthan size bytes or if it was successfully truncated. Returns TF_ ERROR
if the file could not be truncated.

The Stdin/Stdout/Stderr routines allow these file steams to be redirected on a per thread basis, eg. calling
epicsSetThreadStdout will affect only the thread which callsit.

epicsGetStdin, ..., epicsStdoutPrintf arenot normally called by user code. Instead code that wants to
allow redirection needs only to include epi csSt di oRedi rect. h

20.13 epicsStdioRedirect

Including this file cause the following names to be changed:

* stdin becomes epicsGetStdin()

* stdout becomes epicsGetStdout()
* stderr becomes epicsGetStderr()
* printf becomes epicsStdoutPrintf

Thisis done so that redirection can occur. A primary use of thisfacility isiocsh. It allows redirection of input and output.
In order for it to work, all modulesinvolved in 1/0 can just include this header.

20.14 epicsThread

epi csThread. h contains C++ and C descriptions for a thread.

20.14.1 C Interface
typedef void (*EPI CSTHREADFUNC) (void *parm;

static const unsigned epicsThreadPriorityMax = 99;
static const unsigned epicsThreadPriorityMn = O;
/* sone generic val ues */

static const unsigned epicsThreadPriorityLow = 10;

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 295

Chapter 20: libCom OSl libraries
epicsThread

static const unsigned epicsThreadPriorityMedi um = 50;
static const unsigned epicsThreadPriorityH gh = 90;

/* sonme iocCore specific values */

static const unsigned epicsThreadPriorityCAServerLow = 20;

static const unsigned epicsThreadPriorityCAServerH gh = 40
static const unsigned epicsThreadPriorityScanLow = 60;
static const unsigned epicsThreadPriorityScanH gh = 70
static const unsigned epicsThreadPrioritylocsh = 91

static const unsigned epicsThreadPriorityBaseMax = 91

/* stack sizes for each stackSizeC ass are inplenmentation and CPU dependent */
typedef enum {

epi csThreadSt ackSnal I, epi csThreadSt ackMedi um epi csThreadSt ackBi g
} epicsThreadSt ackSi zed ass;

typedef enum {
epi csThr eadBool eanSt at usFai |, epi csThr eadBool eanSt at usSuccess
} epi csThreadBool eanSt at us;

unsi gned int epicsThreadGet St ackSi ze(epi csThreadSt ackSi zeC ass si ze);

typedef int epicsThreadOncel d;
#define EPI CS_THREAD ONCE_INIT O

voi d epi csThreadOnce(epi csThreadOnceld *id, EPI CSTHREADFUNC, void *arg);
voi d epi csThreadExi t Mai n(voi d);

/* (epicsThreadld)O is guaranteed to be an invalid thread id */
typedef struct epicsThreadOSD *epi csThreadl d;

epi csThreadl d epi csThreadCreat e(const char *nane,
unsigned int priority, unsigned int stackSize,
EPI CSTHREADFUNC funptr, void *parm;
voi d epi csThreadSuspendSel f (voi d);
voi d epi csThreadResune(epi csThreadld id);
unsi gned int epicsThreadGetPriority(epicsThreadld id);
unsi gned int epicsThreadGetPrioritySelf();
voi d epicsThreadSetPriority(epicsThreadld id,unsigned int priority);
epi csThr eadBool eanSt at us epi csThreadH ghest PrioritylLevel Bel ow (
unsigned int priority, unsigned *pPriorityJustBel ow);
epi csThr eadBool eanSt at us epi csThreadLowest Pri orityLevel Above (
unsigned int priority, unsigned *pPriorityJustAbove);
i nt epi csThreadl sEqual (epi csThreadld i dl, epicsThreadld id2);
i nt epi csThreadl sSuspended(epi csThreadld id);
voi d epi csThreadSl eep(doubl e seconds) ;
doubl e epi csThreadSl eepQuant um(voi d) ;
epi csThreadl d epi csThreadGet | dSel f (voi d);
epi csThreadl d epi csThreadGet |l d(const char *nane);

const char * epi csThreadGet NaneSel f (void);
voi d epi csThreadGet Nane(epi csThreadld id, char *nane, size_t size);
i nt epi csThreadl sCkToBl ock(voi d);

296 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries
epicsThread

voi d epi csThreadSet OkToBIl ock(int isOkToBIl ock);

voi d epi csThr eadShowAl | (unsi

gned int |evel);

voi d epi csThreadShow epi csThreadld id, unsigned int |evel);

typedef void * epicsThreadPrivateld,;

epi csThreadPrivatel d epi csThreadPri vat eCreate(void);

voi d epi csThreadPri vat eDel et e(epi csThreadPrivateld id);
voi d epi csThreadPri vat eSet (epi csThreadPrivateld,void *);
void * epicsThreadPrivateCet (epi csThreadPrivateld);

M ethod

Meaning

epicsThreadGetStackSize

Get a stack size value that can be given to epicsThreadCreate. The size argument
should be one of the values epicsThreadStackSmall, epicsThreadStackM edium or
epicsThreadStackBig.

epicsThreadOnce

Thisisused asfollows:
void mylnitFunc(void * arg)

{

}
epicsThreadOnceld onceFlag = EPICS THREAD_ONCE_INIT;

epicsThreadOnce(& onceFlag,myl nitFunc,(void *)myParm);
For each unique epicsThreadOncel d, epicsThreadOnce guarantees
1) myInitFunc is called only once.
2) mylnitFunc completes before any epicsThreadOnce call completes.
Note that mylnitFunc must not call epicsThreadOnce with the same onceld.

epicsThreadExitMain

If the main routineis done but wantsto let other threadsrun it can call thisroutine. This
should be the last call in main, except the final return. On most systems
epicsThreadExitMain never returns. This must only be called by the main thread.

epicsThreadCreate

Create a new thread. The use made of the priority, and stackSize argumentsis
implementation dependent. Some implementations may ignore one or other of these,
but for portability appropriate values should be given for both. The value passed as the
stackSize parameter should be obtained by calling epicsThreadGetStackSize. The
funptr argument specifies a function that implements the thread, and parm isthe single
argument passed to funptr. A thread terminates when funptr returns.

epicsThreadSuspendSel f

This causes the calling thread to suspend. The only way it can resumeis for another
thread to call epicsThreadResume.

epicsThreadResume

Resume a suspended thread. Only do this if you know that it is safe to resume a
suspended thread.

epicsThreadGetPriority

Get the priority of the specified thread.

epicsThreadGetPriority Self

Get the priority of thisthread.

epicsThreadSetPriority

Set anew priority for the specified thread. The result isimplementation dependent.

epicsThreadHighestPriorityL evel Below

Get apriority that isjust lower than the specified priority.

EPICS Release 3.14.10

EPICS Application Developer’'s Guide 297

Chapter 20: libCom OSl libraries
epicsThread

Method

Meaning

epicsThreadlL owestPriorityL evel Above

Get apriority that is just above the specified priority.

epicsThreadlsEqual

Compares two threadlds and returns (0,1) if they (are not, are) the same.

epicsThreadl sSuspended

BAD NAME. taskwd needs this call. It really means: |'s there something wrong with
this thread? This could mean suspended or no longer exists or etc. It isaproblem
because it isimplementation dependent.

epicsThreadSleep

Sleep for the specified period of time, i.e. sleep without using the cpu. If delay is>0
then the thread will sleep at least until the next clock tick. The exact time is determined
by the underlying architecture. If delay is <= 0 then adelay of O is requested of the
underlying architecture. What happens is architecture dependent but often it allows
other threads of the same priority to run.

epicsThreadSlegpQuantum

This function returns the minimum slumber interval obtainable with
epicsThreadSleep() in seconds. On most OS there is a system scheduler interrupt
interval which determines the value of this parameter. Knowledge of this parameter is
used by the various components of EPICS to improve scheduling of software tasksin
time when the reduction of average time scheduling errorsisimportant.

If this parameter is unknown or is unpredictable for aparticular OS then it is safe to
return zero.

epicsThreadGetldSelf

Get the threadld of the calling thread.

epicsThreadGetld

Get the threadld of the specified thread. A return of O means that no thread was found
with the specified name.

epicsThreadGetNameSel f

Get the name of the calling thread.

epicsThreadGetName

Get the name of the specified thread. The valueis copied to a caller specified buffer so
that if the thread terminatesthe caller is not |eft with a pointer to something that may no
longer exist.

epicsThreadl sOkToBlock

Isit OK for athread to block? This can be called by support code that does not know if
itiscalled in athread that should not block. For example the errlog system calls thisto
decide when messages should be displayed on the console.

epicsThreadSetOkToBlock

When athread is started the default is that it is not allowed to block. This method can
be called to change the state. For example iocsh calls thisto specify that it is OK to
block.

epicsThreadShowAll Display info about all threads.

epicsThreadShow Display info about the specified thread.

epicsThreadPrivateCreate Thread private variables are intended for use by legacy libraries written for asingle
threaded environment and which uses a global variable to store private data. The only
code in base that currently needs this facility is channel access. A library that needs a
private variable should make exactly one call to epicsThreadPrivateCreate. Each thread
should call epicsThreadPrivateSet when the thread is created. Each library routine can
call epicsThreadPrivateGet each timeit is called.

epicsThreadPrivateDel ete Delete athread private variable.

298 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries
epicsThread

Method Meaning
epicsThreadPrivateSet Set the value for athread private variable.
epicsThreadPrivateGet Get the value of athread private variable, the value is the value set by the call to

epicsThreadPrivateSet that was made by the same thread. If called before
epicsThreadPrivateSet it returns 0.

epicsThread is meant as a somewhat minimal interface for multithreaded applications. It can be implemented on a wide
variety of systems with the restriction that the system MUST support a multithreaded environment. A POSIX pthreads
version is provided.

Theinterface provides the following thread facilities, with restrictions as noted:

Life cycle - A thread starts life as a result of a call to epicsThreadCreate. It terminates when the thread function
returns. It should not return until it hasreleased all resourcesit uses. If athread is expected to terminate as anatural
part of itslife cycle then the thread function must return.

epicsThreadOnce - This provides the ability to have an initialization function that is guaranteed to be called exactly
once.

main - If amain routine finishes its work but wants to leave other threads running it can call epicsThreadExitMain,
which should be the last statement in main.

Priorities - Ranges between 0 and 99 with a higher number meaning higher priority. A humber of constants are
defined for iocCore specific threads. The underlying implementation may collapse the range 0 to 99 into a smaller
range; even asingle priority. User code should never use priorities to guarantee correct behavior.

Stack Size - epicsThreadCreate accepts a stack size parameter. Three generic sizes are available: small, medium,
and large. Portable code should always use one of the generic sizes. Some implementation may ignore the stack
Size request and use a system default instead. Virtual memory systems providing generous stack sizes can be
expected to use the system default.

epicsThreadld - This is given a value as a result of a call to epicsThreadCreate. A value of 0 always means no
thread. If athreadld is used for athread that has terminated the result is not defined (but will normally lead to bad
things happening). Thus code that |ooks after other threads MUST be aware of threads terminating.

20.14.2 C++ Interface

cl ass epi csThreadRunabl e {
public:

}s

virtual void run() = 0;
virtual void stop();
virtual void show(unsigned int |evel) const;

cl ass epi csShareC ass epi csThread {
public:

epi csThread (epi csThreadRunabl e & const char *nane, unsigned int stackSize,
unsigned int priority=epicsThreadPrioritylLow);

virtual ~epicsThread ();

void start();

void exitWait ();

bool exitWait (const double delay);

voi d exitWaitRel ease (); // noop if not called by managed thread

static void exit ();

void resunme ();

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 299

Chapter 20: libCom OSl libraries
epicsThread

voi d get Nane (char *name, size_t size) const;

epi csThreadl d getld () const;

unsigned int getPriority () const;

void setPriority (unsigned int);

bool prioritylsEqual (const epicsThread &other Thread) const;
bool isSuspended () const;

bool isCurrentThread () const;

bool operator == (const epicsThread & hs) const;

/* these operate on the current thread */

static void suspendSelf ();

static void sleep (double seconds);

static epicsThread & getSelf ();

static const char * getNaneSelf ();

static bool isCkToBl ock ();

static void set CkToBl ock(bool isCkToBl ock) ;
private:

1
templ ate <class T>
cl ass epicsThreadPrivate {
public:
epi csThreadPrivate ();
~epi csThreadPrivate ();
T *get () const;
void set (T *);
cl ass unabl eToCreat eThreadPrivate {}; // exception
private:

b
The C++ interface is just a wrapper around the C interface. Two differences are the method st art and the class
epi csThr eadRunabl e.

The method st art must be called only after the epi csThead object is constructed. It in turn calls the r un method of
theepi csThr eadRunabl e object.

Code using the C++ interface code must provide a class that derives from epi csThr eadRunabl e. One way to
accomplish thisis asfollows:

class nyThread: public epicsThreadRunabl e {
public:
myThread(int arg, const char *nane);
virtual ~nmyThread();
virtual void run();
epi csThread thread;

}

myThr ead: : myThread(i nt arg, const char *nane)
t hread(*thi s, name, epi csThr eadCet St ackSi ze(epi csThreadSt ackSmal |), 50)

{

}
nyThread: : ~myThread() {}

thread. start();

300 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries
epicsTime

voi d nyThread: : run()
{

}

20.15 epicsTime

epi csTi nme. h contains C++ and C descriptions for time.

20.15.1 Time Related Structures

/* epics tinme stanp for Cinterface*/

typedef struct epicsTi neStanp {
epi csU nt 32 secPast Epoch; /* seconds since 0000 Jan 1, 1990 */
epi csU nt 32 nsec; /* nanoseconds within second */

} epicsTi neSt anp;

/*TS STAWP is deprecated */
#defi ne TS _STAMP epi csTi meSt anp

struct tinespec; /* POSIX real time */
struct tineval; /* BSD */
struct | _fp; /* NIP tinestanp */

/1 extend ANSI C RTL "struct tm' to include nano seconds within a second
/1 and a struct tmthat is adjusted for the |local tinezone
struct | ocal _tmnano_sec {

struct tmansi _tm /* ANSI Ctine details */

unsi gned | ong nSec; /* nano seconds extension */

}s

/1 extend ANSI C RTL "struct tm' to includes nano seconds within a second
/1 and a struct tmthat is adjusted for GVI (UTC)
struct gmtmnano_sec {

struct tmansi _tm /* ANSI Ctine details */

unsi gned |l ong nSec; /* nano seconds extension */

}s

/1 wrapping this in a struct allows conversion to and
/1 fromANSI time_t but does not all ow unexpected
/1 conversions to occur
struct tinme_t_wrapper {
time_t ts;

}s

The above structures are for the various time formats.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 301

Chapter 20: libCom OSl libraries
epicsTime

» epi csTi meSt anp - Thisisthe structure used by the C interface for epics time stamps. The C++ interface stores
thisinformation in private members. The two elements of the class are:

» secPast Epoch - The number of seconds since January 1, 1990 (the epics epoch).

 nsec - hanoseconds within a second
NOTE: TS_STAMP isdefined for compatibility with existing code.

* ti mespec - Thisisdefined by POSIX Real Time. It requires two mandatory fields:
e tine_t tv_sec - Number of seconds since 1970 (The POSIX epoch)
e | ong tv_nsec - nanoseconds within a second
e timeval -BSD and SRV5 Unix timestamp. It has two fields:
e tine_t tv_sec - Number of seconds since 1970 (The POSIX epoch)
e tine_t tv_nsec - nanoseconds within a second
e struct | _fp - Network Time Protocol timestamp. The fields are:
* |_ui - Number of seconds since 1900 (The NTP epoch)
« |_uf - Fraction of a second. For example 0x800000000 represents 1/2 second.
* local _tmnano_sec and gmtm nano_sec - Defined by epics. It just adds a nanosecond field to
struct tm

e time_t_wapper - This is for converting to/from the ANSI C time_t. Since ti ne_t is usualy an
elementary type providing a conversion operator from ti nme_t to/from epi csTi me could cause undesirable
implicit conversions. Providing a conversion operator to/from a tinme_t_w apper prevents implicit
conversions.

NOTE on conversion. The epics implementation will properly convert between the various formats from the beginning of
the EPICS epoch until at least 2038. Unless the underlying architecture support has defective POSIX, BSD/SRV5, or
standard C time support the epics implementation should be valid until 2106.

20.15.2 C++ Interface

cl ass epi csTi ne;

cl ass epi csTi neEvent {
friend class epicsTineg;

public:
epi csTi neEvent (const int &event Nane);
private:

i nt event Nunber ;

}s

cl ass epicsTinme {

public:
/1 exceptions
cl ass unabl eToFetchCurrentTime {};
class formatProbl emWthStruct T™M {};

epi csTime ();
epi csTine (const epicsTine &);

static epicsTine get Event (const epicsTi neEvent &event);
static epicsTine getCurrent ();

/1 convert to and from EPICS epi csTi neStanp fornat
operator epicsTinmeStanp () const;

302 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries

epicsTime

epi csTine (const epicsTimeStanp &ts);
epi csTime operator = (const epicsTineStanp & hs);

/1 convert to and from ANSI tine_t

operator time_t_wapper () const;

epi csTine (const time_t_wapper &tv);

epi csTime operator = (const tine_t_wapper & hs);

/1l convert to and from ANSI Cs "struct tnf (w th nano seconds)
/1l adjusted for the local time zone

operator |ocal _tmnano_sec () const;

epi csTinme (const |ocal _tmnano_sec &ts);

epi csTine operator = (const |ocal _tmnano_sec &rhs);

/1l convert to ANSI Cs "struct tnf (with nano seconds)
/1 adjusted for GMtine (UTQ
operator gmtm nano_sec () const;

/1 convert to and fromPOSI X RT's "struct tinespec”
operator struct timespec () const;

epi csTinme (const struct timespec &ts);

epi csTime operator = (const struct tinmespec & hs);

/1 convert to and fromBSD s "struct tineval"”
operator struct timeval () const;

epi csTinme (const struct timeval &ts);

epi csTime operator = (const struct tinmeval &rhs);

/1 convert to and from NTP tinestanp format
operator | _fp () const;

epicsTine (const | _fp &)

epi csTine operator = (const | _fp &hs);

/1 convert to and from WN32s FILETIME (inplenented only on W N32)

operator struct _FILETIME () const;
epi csTine (const struct _FILETIME &);
epi csTine & operator = (const struct _FILETIME &);

/1 arithnetic operators

doubl e operator- (const epicsTime & hs) const; // returns seconds
epi csTi me operator+ (const double & hs) const; // add rhs seconds
epi csTi nme operator- (const double & hs) const; // subtract rhs seconds

epi csTi nme operator+= (const double &hs); // add rhs seconds

epi csTime operator-= (const double &hs); // subtract rhs seconds

/1 conparison operators

bool operator == (const epicsTine & hs) const;
bool operator != (const epicsTine & hs) const;
bool operator <= (const epicsTine & hs) const;
bool operator < (const epicsTinme & hs) const;
bool operator >= (const epicsTine & hs) const;
bool operator > (const epicsTinme & hs) const;

EPICS Release 3.14.10 EPICS Application Developer’'s Guide

303

Chapter 20: libCom OSl libraries
epicsTime

/1 convert current state to user-specified string

size_t strftime (char *pBuff, size_t buflLength, const char *pFormat) const;

/1 dunp current state to standard out
voi d show (unsigned interestlLevel) const;

/1 deprecated

static void synchronize ();
private:

b

20.15.3 class epicsTimeEvent

cl ass epi csShared ass epi csTi neEvent

{
friend class epicsTine;
public:
epi csTi neEvent (const int &event Nane);
private:
i nt event Nunber ;
1

M ethod Meaning

epicsTimeEvent(eventName) | Thisisthe only method provided for this
class. Why isit needed?

20.15.4 class epicsTime

Method Meaning

epicsTime() The default constructor sets the time to the beginning of the epics epoch.

epicsTime(const epicsTime& t);

getEvent Returns the time for the associated event. See the description of the C routine

epicsTimeGetEvent described below for details.

getCurrent Gets the current time. An exampleis:

epi csTime time = epicsTine::getCurrent();

304 EPICS Application Developer’'s Guide

1/5/09

Chapter 20: libCom OSl libraries
epicsTime

Method

Meaning

convert to/from
epicsTimeStamp

Three methods are provided for epicsTimeStamp. A copy constructor, an assignment
operator, and a conversion to epicsTimeStamp. Assume the following definitions:
epi csTime timne;
epi csTimeStanp ts;

An example of the copy constructor is:
epi csTime timel(ts);

An example of the assignment operator is:
time = ts;

An example of the epicsTimeStamp operator is:

ts = tine;

Convert to/from
ANSI time t

Three methods are provided for ANSI time_t. A copy constructor, an assignment
operator, and a conversion to time_t_wrapper. The structure time_t_wrapper must be
used instead of time_t because undesired conversions could occur: Assume the
following definitions:

time t tt;

time_t_wapper ttw

epi csTinme tine;

An example of the copy constructor is:

ttw tt = tt;
epicsTime tinmel(ttw);

An example of the assignment operator is:
time = ttw
An example of thetime_t_wrapper operator is:

ttw = tine;
tt =ttwtt;

convert to and from
tm_nano_sec

Three methods are provided for tm_nano_sec A copy constructor, an assignment
operator, and a conversion to tm_nano_sec. Assume the following definitions:

| ocal _tm nano_sec ttn;

epi csTime tine;

An example of the copy constructor is:
epi csTime timel(ttn);

An example of the assignment operator is:
time = ttn;
An example of thetm_nano_sec operator is:

ttn = tine;

EPICS Release 3.14.10

EPICS Application Developer’'s Guide 305

Chapter 20: libCom OSl libraries
epicsTime

Method

Meaning

convert to and from
POSIX RT’s "struct timespec”

Three methods are provided for struct timespec. A copy constructor, an assignment
operator, and a conversion to struct timespec. Assume the following definitions:
struct tinespec tts;
epi csTime timne;

An example of the copy constructor is:
epicsTime timel(tts);

An example of the assignment operator is:
time = tts;
An example of the struct timespec operator is:

tts = tine;

convert to and from
BSD’s"struct timeva"

Three methods are provided for struct timeval. A copy constructor, an assignment
operator, and a conversion to struct timeval. Assume the following definitions:
struct tineval ttv;
epi csTinme tine;

An example of the copy constructor is:
epicsTime tinmel(ttv);

An example of the assignment operator is:
time = ttv;
An example of the struct timeval operator is:

ttv = tine;

convert to and from NTP
timestamp format

Three methods are provided for ntpTimeStamp. A copy constructor, an assignment
operator, and a conversion to ntpTimeStamp. Assume the following definitions:

| fp ntp;
epi csTime tine;

An example of the copy constructor is:
epi csTime timel(ntp);

An example of the assignment operator is:
time = ntp;
An example of the ntpTimeStamp operator is:

ntp = tine;

306

EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries

epicsTime
Method Meaning
arithmetic operators The arithmetic operators alow the difference of two epicsTimes, with the result in
- seconds. It also allows -, +, +=, and -= where the left hand argument is an epicsTime
+ and the right hand argument is a double. Examples are:
+= epicsTime time, tinmel, tinez,
= double t1,t2,13;
tl =time2 - tinel;
time = timel + 4.5;
time = time2 - t3;
time2 += 6.0;
Comparison operators Two epics times can be compared:
==, |5, <=,<,>5,> epicsTime tinel, tinme2;
if(timel<=tine2) {
strftime Thisisafacility similar to the ANSI C library routine strftime. See K& R for details

about strftime. The epicsTime method al so provides support for the printing the
nanoseconds portion of the time. It looks in the format string for the sequence "%0nf"
where nisthe desired precision. It uses this format to convert the nanoseconds value to
the requested precision. For example:

epi csTime time = epicsTine::getCurrent();

char buf[30];

tinme.strftine(buf, 30, "%/ %1 %l % %Vt 6. Y06 ") ;

printf("%\n", buf);

Will print the timein the format:
2001/ 01/ 26 20:50: 29. 813505

show Shows the date/time.

20.15.5 C Interface

/* Al epicsTime routines return (-1,0) for (failure,success) */
#def i ne epicsTi medK 0

#define epi csTi meERROR (- 1)

/*Some special values for eventNumber*/

#def i ne epi csTi meEventCurrentTinme O

#define epicsTi mneEventBest Tine -1

#def i ne epi csTi meEvent Devi ceTime -2

int epicsTimeGetCurrent (epicsTinmeStanp *pDest);
int epicsTineGet Event (epicsTimeStanp *pDest, int eventNunber);

/* convert to and fromANSI Cs "tinme t" */
int epicsTimeToTime_t (time_t *pDest, const epicsTineStamp *pSrc);
int epicsTimeFronlime_t (epicsTimeStanp *pDest, time_t src);

/*convert to and fromANSI Cs "struct tnf with nano seconds */
int epicsTi meToTM (struct tm *pDest, unsigned | ong *pNSecDest,

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 307

Chapter 20: libCom OSl libraries
osiPoolStatus

const epicsTi meStanmp *pSrc);

i nt epicsTi meToGMIM (struct tm *pDest, unsigned |ong *pNSecDest,
const epicsTi meStanmp *pSrc);

i nt epicsTi meFromIM (epi csTi neSt anp *pDest, const struct tm *pSrc,
unsi gned | ong nSecSrc);

/* convert to and fromPOSI X RT's "struct timespec” */
i nt epicsTi meToTi mespec (struct tinmespec *pDest, const epicsTineStanp *pSrc);
i nt epi csTi meFronili mespec (epicsTi meStanp *pDest, const struct tinmespec *pSrc);

/* convert to and fromBSD s "struct tinmeval" */
i nt epicsTimeToTi meval (struct tinmeval *pDest, const epicsTi neStanp *pSrc);
i nt epicsTi meFronili meval (epicsTi meStanp *pDest, const struct tinmeval *pSrc);
[*arithmetic operations */
doubl e epi csTi neDi ffl nSeconds (
const epicsTi meStanp *plLeft, const epicsTi meStanp *pRight);
voi d epi csTi meAddSeconds (
epi csTi meSt anp *pDest, doubl e secondsToAdd); /* adds seconds to *pDest */

[*conparison operations: returns (0,1) if (false,true) */
i nt epicsTi meEqual (const epicsTi meStanp *plLeft, const epicsTi meStanp *pRight);
i nt epi csTi meNot Equal (const epicsTi meStanp *pLeft, const epicsTi meStanp *pRight);
i nt epicsTi meLessThan(const epicsTi meStanp *pLeft, const epicsTi meStanp *pRi ght);
i nt epi csTi meLessThanEqual (
const epicsTi meStanp *plLeft, const epicsTi meStanp *pRight);
i nt epicsTi meG eaterThan (
const epicsTi meStanp *plLeft, const epicsTi meStanp *pRight);
i nt epi csTi meG eat er ThanEqual (
const epicsTi meStanp *plLeft, const epicsTi meStanp *pRight);
/*convert to ASCII string */
Size_t epicsTineToStrftinme (
char *pBuff, size_t buflLength, const char *pFormat, const epicsTi meStanp
“pTS);

/* dunp current state to standard out */

voi d epi csTi meShow (const epicsTi neStanp *, unsigned interestlLevel);
/* OS dependent reentrant versions of the ANSI C interface because */
/* vxWorks gntinme_r interface does not match POSI X standards */

int epicsTime_localtime (const time_t *clock, struct tm*result);
int epicsTime_gntine (const tine_t *clock, struct tm*result);

The C interface provides most of the features as the C++ interface. The features of the C++ operators are provided as
functions.

Note that the epicsTimeGetCurrent and epicsTimeGetEvent routines are now implemented in epicsGeneral Time.c

20.16 os Pool Status

osi Pool St at us. h contains the following description:

i nt osi Sufficent Spacel nPool (voi d);

308 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries

osiProcess

Method Meaning

osi SufficentSpacel nPool Return (truefase) if thereis sufficient free memory.

This determinesif enough free memory exists to continue.
A vxWorks version returns (true,false) if memFindMax returns (>100000, <=100000) bytes.

The default version always returns true.

20.17 osiProcess

osi Process. h containsthe following:

t ypedef enum osi Get User NaneRet urn {
osi Get User NaneFai |,
osi Get User NaneSuccess

}osi Get User NanmeRet ur n;

osi Get User NameRet urn osi Get User Nane (char *pBuf, unsigned bufSize);

/*
* Spawn detached process with naned executable, but return
* 0si SpawnDet achedPr ocessNoSupport if the local OS does not
* support heavy wei ght processes.
*/
t ypedef enum osi SpawnDet achedPr ocessReturn {
osi SpawnDet achedPr ocessFai | ,
osi SpawnDet achedPr ocessSuccess,
osi SpawnDet achedPr ocessNoSupport
} osi SpawnDet achedPr ocessRet ur n;

osi SpawnDet achedPr ocessRet urn osi SpawnDet achedPr ocess(
const char *pProcessNane, const char *pBaseExecut abl eNane);

Not documented.

20.18 osiSigPipel gnore
osi Si gPi pel gnor e. h contains the following:
voi d install SigPi pel gnore (void);

Not documented.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide

309

Chapter 20: libCom OSl libraries
osiSock.h

20.19 osiSock.h

See the header file in <base>/src/libCom/osi.

20.20 Device Support Library

NOTE: EPICS Base only provides vxWorks and RTEMS back-end implementations of these routines. Versions of the
back-end routines for other operating systems can be added in a support or 10C application.

20.20.1 Overview

devLi b. h provides definitions for a library of routines useful for device and driver modules, which are primarily
indended for accessing VME devices. If all VME driversregister with these routines then addressing conflicts caused by
multiple device/drivers trying to use the same VME addresses will be detected.

20.20.2 L ocation Probing

20.20.2.1 Read Probe

long devReadPr obe(
unsi gned wor dSi ze,
vol atil e const void *ptr,
voi d *pVal ueRead);

Performs a bus-error-safe atomic read operation width wor dSi ze bytes from the pt r location, placing the value read (if
successful) at pVal ueRead. The routine returns a failure status (non-zero) if abus error occurred during the read cycle.

20.20.2.2 Write Probe

long devWiteProbe(
unsi gned wor dSi ze,
vol atile void *ptr,
const void *pVal ueWwitten);

Performs a bus-error-safe atomic write operation width wor dSi ze which copiesthe value from pVal ueWi t t en tothe
pt r location. The routine returns afailure status (non-zero) if abus error occurred during the write cycle.

20.20.2.3 No Response Probe

| ong devNoResponsePr obe(
epi csAddr essType addr Type,
size_t base,
size_ t size);

This routine performs a series of read probes for all word sizes from char to long at every naturally aligned location in the
range [base, base+si ze) for the given bus address type. It returns an error if any location responds or if any such
location cannot be mapped.

310 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries
Device Support Library

20.20.3 Registering VM E Addresses

20.20.3.1 Definitions of Address Types

typedef enum {

at VMEAL16, at VMEA24, at VMEA32,

at | SA,

atLast /* atlLast is the last enumin this list */
} epi csAddr essType;

char *epi csAddressTypeNane[] = {
"VME Al6”, "VME A24”, "VME A32",
") SA"

b

20.20.3.2 Register Address

| ong devRegi st er Addr ess(
const char *pOwner Nane,
epi csAddr essType addr Type,
size_t | ogi cal BaseAddress,
size_t size, /* bytes */
vol atil e void **pLocal Address);

Thisroutineis called to register aVME address. The routine keeps alist of all VME address ranges requested and returns
an error message if an attempt is made to register any addresses that overlap a range that is already being used.
*pLocal Addr ess is set equal to the address as seen by the caller.

20.20.3.3 Print Address Map
| ong devAddressMap(voi d)
This routine displays the table of registered VME address ranges, including the owner of each registered address.

20.20.3.4 Unregister Address

l ong devUnregi st er Address(
epi csAddr essType addr Type,
size_t | ogical BaseAddress,
const char *pOaner Nane) ;

This routine releases address ranges previoudly registered by acall to devRegi st er Addr ess or devAl | ocAddr ess.

20.20.3.5 Allocate Address

I ong devAl |l ocAddress(
const char *pOwner Nane,
epi csAddr essType addr Type,
size t size,
unsi gned al i gnnment, /*nunber of |ow zero bits needed in addr*/
vol atil e void **pLocal Address);

This routine is called to request the library to allocate an address block of a particular address type. This is useful for
devicesthat appear in more than one address space and can program the base address of one window using registers found
in another window.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 311

Chapter 20: libCom OSl libraries
Device Support Library

20.20.4 Interrupt Connection Routines

20.20.4.1 Connect

| ong devConnect | nterrupt VIVE(
unsi gned vect or Nunber,
void (*pFunction)(void *),
void *paraneter);

Connect ISR pFunct i on up to the VME interrupt vect or Nunber .

20.20.4.2 Disconnect

| ong devDi sconnect | nterrupt VIVE(
unsi gned vect or Number,
void (*pFunction)(void *));

Disconnects an ISR from its VME interrupt vector. The parameter pFunct i on should be set to the C function pointer
that was connected. It is used as a key to prevent a driver from inadvertently removing an interrupt handler that it didn’t
install.

20.20.4.3 Check If Used

i nt devlnterrupt!nUseVME(
unsi gned vect or Nurrber) ;

Determinesif a VME interrupt vector isin use, returning a boolean value.

20.20.4.4 Enable

| ong devEnabl el nt errupt Level VME(
unsi gned | evel);

Enable the given VME interrupt level onto the CPU.

20.20.4.5 Disable

| ong devDi sabl el nterrupt Level VIVE(
unsi gned | evel);

Disable VME interrupt level. This routine should generally never be used, since it is impossible for a driver to know
whether any other active drivers are still making use of a particular interrupt level.

20.20.5 M acros for Normalized Analog Values

20.20.5.1 Convert Digital Value to aNormalized Double Vaue

#define devCreat eMask(NBITS) ((1<<(NBITS))-1)
#define devDi gToNm (DI G TAL, NBI TS) \
(((doubl e) (DI G TAL))/ devCreat eMask(NBI TS))

20.20.5.2 Convert Normalized Double Value to aDigital Value

#def i ne devNm ToDi g(NORMVAL, NBI TS) \
(((long) (NORVAL)) * devCreat eMask(NBITS))

312 EPICS Application Developer’'s Guide 1/5/09

Chapter 20: libCom OSl libraries
vxWorks Specific routines

20.20.6 Deprecated Interrupt Routines

20.20.6.1 Definitions of Interrupt Types (deprecated)
typedef enum {intCPU, intVME, intVXl} epicslnterruptType;

The routines that use this typedef have all been deprecated, and currently only exist for backwards compatibility purposes.
The typedef will be removed in afuture release, along with those routines.

20.20.6.2 Connect (deprecated)

 ong devConnect | nterrupt(
epi csl nterrupt Type intType,
unsi gned vect or Nunber,
void (*pFunction)(),
void *paraneter);

This routine has been deprecated, and currently only exists for backwards compatibility purposes. Uses of this routine
should be converted to call devConnect | nt er r upt VIVE or related routines instead. This routine will be removed in a
future release.

20.20.6.3 Disconnect (deprecated)

long devDi sconnectlnterrupt(
epi csl nterrupt Type intType,
unsi gned vect or Nunber);

This routine has been deprecated, and currently only exists for backwards compatibility purposes. Uses of this routine
should be converted to call devDi sconnect | nt er r upt VIVE or related routines instead. This routine will be removed
inafuture release.

20.20.6.4 Enable Level (deprecated)

| ong devEnabl el nterruptLevel (
epi csl nterrupt Type intType,
unsi gned |evel);

This routine has been deprecated, and currently only exists for backwards compatibility purposes. Uses of this routine
should be converted to call devEnabl el nt er r upt Level VMVE or related routines instead. This routine will be removed
in afuture release.

20.20.6.5 Disable Level (deprecated)

| ong devDi sabl el nterruptLevel (
epi csl nterrupt Type intType,
unsi gned | evel);

This routine has been deprecated, and currently only exists for backwards compatibility purposes. Uses of this routine
should be converted to call devDi sabl el nt errupt Level VME or related routines instead. This routine will be
removed in afuture release.

20.21 vxWorks Specific routines

The routines described in this section are included in a application by the Makfile command:

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 313

Chapter 20: libCom OSl libraries
vxXWorks Specific routines

<appl >_0OBJS_vxWirks += $(EPI CS_BASE_BI N)/ vxConlLi brary

20.21.1 iocClock

This provides a clock for vxWorks by using Network Time Protocal (NTP) client calls. It is required for all vxWorks
IOCs. It also providesthe dat e command.

20.21.2 veclist

For VME systems this shows the interrupt vectors.

20.21.3 logM sgToErrlog
Thistraps all callsto logMsg and sends them to errlogPrintf.

20.21.4drvTS

This is a driver that supports hardware event systems. It is documented in TSdri ver. htm , which is in the
docunent at i on directory of base. Unless TSinit is called before ioclnit it will not be used.

20.21.5 camacL ib.h
Thiswas included with 3.13.

20.21.6 epicsDynLink

This is provides symFindByNameEPICS. It is only provided for device/driver support that has not been converted to use
epicsFindSymbol. Some day epicsDynLink will no longer be supported.

20.21.7 module_types.h

It isonly provided for device/driver support that has not been converted to use OSl features of base. Some day it will no
longer be supported. Instead of using this drivers should accept a configure command that specifies the information
provided by nodul e_types. h

20.21.8 task_params.h

It is only provided for device/driver support that has not been converted to use OSI features of base. Some day it will no
longer be supported.

20.21.9 vxComLibrary
Thisisaroutine that causesiocClock, drvTS, epicsDynLink, logMsgToErrlog and veclist to be loaded.

314 EPICS Application Developer’'s Guide 1/5/09

Chapter 21: Registry

Under vxWorks osiFindGlobal Symbol() can be used to dynamically bind to record, device, and driver support and
functions for use with subroutine records. However on most other systems this routine is not functional, so a registry
facility is provided to implement the binding. Any item that islooked up by name at runtime must be registered for it to be
visible to other code.

At compile time a perl script reads the 10Cs database definition file and produces a C source file containing a routine
which registers al record/device/driver/function support defined in that file.

21.1 Registry.h

int registryAdd(void *regi stryl D, const char *nane,void *data);
void *registryFind(void *registrylD, const char *nane);

int regi strySet Tabl eSi ze(int size);

void registryFree();

int registrybunp(void);

This is the code which implements the symbol table. Each different type of symbol has its own unique ID. Everything to
be registered is stored in the same gpHash table.

21.2 registryRecordType.h

typedef int (*conputeSizeOfset)(dbRecordType *pdbRecordType);

typedef struct recordTypelLocation {
struct rset *prset;
conput eSi zeOf f set si zeOf f set

} recordTypeLocati on;

i nt regi stryRecordTypeAdd(const char *name, recordTypelLocation *prtl);
recordTypelLocati on *regi stryRecordTypeFi nd(const char *nane);

Provides addresses for both the record support entry table and the routine which computes the size and offset of each field.

21.3 registryDeviceSupport.h

i nt regi stryDevi ceSupport Add(const char *name, struct dset *pdset)
struct dset *regi stryDevi ceSupportFind(const char *nane);

This provides addresses for device support entry tables.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 315

Chapter 21: Registry
registryDriverSupport.h

21.4 registryDriver Support.h

int registryDriverSupport Add(const char *nane, struct drvet *pdrvet);
struct drvet *registryDriverSupportFi nd(const char *nane);
i nt regi sterRecordDevi ceDriver (DBBASE *pdbbase) ;

This provides addresses for driver support tables.

21.5 registryFunction.h

typedef void (*REG STRYFUNCTI ON) (voi d);

typedef struct registryFunctionRef {
const char *nane;
REG STRYFUNCTI ON addr ;

} registryFunctionRef;

i nt regi stryFuncti onAdd(const char *name, REQ STRYFUNCTI ON func);
REQ STRYFUNCTI ON regi stryFuncti onFi nd(const char *nane);
int registryFunctionRef Add(regi stryFunctionRef ref[], int nfunctions);

regi st ryFunct i onAdd registersasingle function. r egi st r yFunct i onRef Add registers several functions.

If you use these routines to register functions directly instead of using af uncti on() statement in a database definition
file, the registered functions will not appear in the output from the dbDunpFunct i on command.

21.6 registerRecordDeviceDriver.c

A version of thisis provided for vxWorks. This version makes it unnecessary to use registerRecordDeviceDriver.pl or
register other external names. Thus for vxWorks everything can work almost exactly like it did in release 3.13.x

21.7 register RecordDeviceDriver.pl

This is the perl script which creates a C source file that registers record/device/driver/function support. The following
steps are take as part of the standard Make rules:

» Execute this script using adbd file created by dbExpand

e Compiletheresulting C++ file

* Include the abject file in the |OC executable

316 EPICS Application Developer’'s Guide 1/5/09

Chapter 22: Database Structures

22.1 Overview

This chapter describes the internal structures describing an |OC database. It is of interest to EPICS system devel opers but
serious application developers may also find it useful. This chapter is intended to make it easier to understand the |OC
source listings. It also gives alist of the header files used by IOC Code.

22.2 Include Files

This section lists the files in base/include that are of most interest to |OC Application Devel opers:
alarm.h alarmString.h - These files contain definitions for all alarm status and severity values.
cadef.h caerr.h caeventmask.h - These files are of interest to anyone writing channel access clients.
callback.h - The definitions for the General Purpose callback system.

dbAccess.h - Definitions for the runtime database access routines.

dbBase.h - Definitions for the structures used to store an EPICS database.

dbDefs.h - A catchal file for definitions that have no other reasonable place to appear.
dbFIdTypes.h - Definitions for DBF_xxx and DBR_xxX types.

dbScan.h - Definitions for the scanning system.

dbStaticL ib.h - The static databases access system.

db_access.h db_addr.h - Old database access.

devLib.h - The device support library

devSup.h - Device Support Modules

drvSup.h - Driver Support Modules

ellLib.h - A library that is provides the same functions as the vxWorks | st Li b. All routines start with el | instead of
I st. Theel | Li b routineswork on both IOCs and on UNIX.

epicsPrint.h errMdef.h - EPICS error handling system
fast_lock.h - The FASTLOCK routines.

freeList.h - A general purpose freelist facility

gpHash.h - A genera purpose hash library.

guigroup.h - The guigroup definitions.

initHooks.h - Definitions used by i ni t Hooks.c routines.

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 317

Chapter 22: Database Structures
Include Files

link.h - Link definitions

module_types.h - VME hardware configuration. SHOUL D NOT BE USED BY NEW SUPPORT.
recSup.h - The record global routines.

special.h - Definitions for special fields, i.e. SPC_xxx.

task_params.h - Definitions for task priorities, stack space, etc.

taskwd.h - Task Watchdog System

tsDefs.h - Time stamp routines. Will also have to look at base/sr ¢/l i bComnit sSubr .c

318 EPICS Application Developer’'s Guide 1/5/09

Chapter 22: Database Structures

Structures
22.3 Structures
. [abMenu
node
name
nChoice dbRecordNode
papChoiceName node
papChoiceValue »| precord
recordname
visible
devsup
™ dbRecordType node
node name
attributeL ist pdset
recList pdsxt
dbBase devList | link_type
menuList — name
recordTypeList no_fields P GEFADES
drvList — no_prompt prompt
bptList link_ind name
pathPvt papsortFldName extra
ppvd sortFldind
dbRecordType
pgpHash pvalFldDes ipnd RecordT;/[?e
ignoreMissingMenus indval Flddes specia
papFldDes field_type
process_passive
drvSup pase
. promptgroup
node interest
name as level
pdrvet initial
p-PrkTable
node ®Brikint
name raw
number slope
papBrkI nt eng

EPICS Release 3.14.10 EPICS Application Developer’'s Guide 319

Chapter 22: Database Structures
Structures

320 EPICS Application Developer’'s Guide 1/5/09

Chapter 23: INDEX

Chapter 23. INDEX

A
AB_IO-linkfieldvalue.................. 107
ACCESS SECUNLY . . .ottt 127

ConfigurationFile. it 128

Initialization 130
AcCcess Security GroUP . .« oo v et e 131
AccessSecurityLevel 140
add record. 191
addpath 94, 96
adiustment.h 277
adjustToWorstCaseAlignment 277
algorithm. 261
Alloc/Free DBENTRY . ..o 199
alocate 269
ANS e 70
Application Specific Configuration. 35
archClean. 40
asAddClient. 137
asAddMember. ... 136
BSCAN et 156
asChangeClient. i 137
asChangeGroUP. . . .« vt ettt 137
ASChECK . . oo 130
asCheckGet(. ... 138
asCheckPut 138
aSCOMPULE. . . oot e 139
asComputeAllAST. . ..o 138
ASCOMPUEEAST .« . o e ettt 139
asdbdump ... 142, 154
asdbdumpFP 142
asDbGEtAS 141
asDbGetMemberPvt 141
BSDUMP . .t 139
asDUMpFP. ... 139
asDumpHag. 139
asDumpHagFP 139
asDumpHash. 140
asDumpHashFP. 140
asDumpMem. 140
asDumpMemFP 140
asDUMpRUIES 139
asDumpRuUlesFP 139
asDuUMpPUag. . ..o 139
asDumpUagFP 139
ASG. 128
ASG - access security configuration. 129
asGetClientPvt 138
asGetMemberPvt. 137
aslnit 122,131, 141, 154
BSINITASYN . . o 141
aslnitFile. 136
aslnitFP. ... 136
aslnitialize. 136
AL 128
adl - field definitionrules. o o oL 98
asl_level - field definition oo 99
ASLD. ot 140

AL L. 140
ASPNBY . . o 142, 155
asphagFP. . .. 142
BSPMEIM . L et e 142, 155
aspmemFP. 142
BSPIUIES . o oo 142, 155
asprulesFP. . . . 142
BOPUAG - - o vttt 142,154
aspuagFP. . ..o 142
asPutClientPvt. 138
asPutMemberPvt. 137
asPVtinDBADDR ... 215
asRegisterClientCallback 138
asRemoveClient i 138
asRemoveMember 136
asSetFilename. oo 130, 141, 154
asSetSubstitutions. 131, 141
asSublnit. ... 131, 142
ASSUDPIOCESS. . . .o oo 131, 142
BB, . 141
asTrapWriteAfter ... i 138, 144
asTrapWriteBefore 138, 144
asTrapWriteld 144
asTrapWriteListener 144
asTrapWriteMessage.o oo e 144
asTrapWriteRegisterListener 144
asTrapWriteUnregisterListener.oouen. 144
asynchronous device supportexample 187
atolPAddr. 276
B
base - field definition. 100
base - field definitionrules L. 98
basedbd 43
BBGPIB_IO-link fildvalue. 107
bindirectory 31
BIN_INSTALLS. 60, 74
BITBUS |IO-link fieldvalue. 107
breakpoint table - database definition................... 105
Breakpoint Tables.o ... 42,109
Breakpoints.t 149
breaktable 95
bucketLibh.. 257
BuildFacility ... 31
Build Requirementst 33
Build software prerequisites. 33
BuildingR3.13AppsWithR3.14.html. 78
BuildingR3.13ExtensionsWithR3.14.html 78
C
CHtlibrary ... 261
caput calback....... ..o 89
Cached PUS.o 89

EPICS Release 3.14.10

EPICS Application Developer’'s Guide 321

Chapter 23: INDEX

CALC - access security configuration 130
CALC ERR ... 257
CAlCAIQUSA0E . . . o oottt 257
CaAlCEIOrStr. . .o e 257
cacPerform. 257
CALLBACK .. i 233
callback.h 233
calbackCancelDelayed. 235
callbackGetUser ... 234-235
callbacklnit 121, 234
calbackRequest i 234-235
callbackRequestDelayed. 235
callbackRequestProcessCallback 234-235
callbackRequestProcessCallbackDelayed. 235
calbackSetCallback i 234
calbackSetPriority 234
calbackSetProcess 234-235
callbackSetQueueSize.t 123, 235-236
calbackSetUser. 234
CaAllOC. .ot 277
calocMustSucceed 277
CAMAC_|O-link fieldvalue. 107
camacLibh 314
CaNCEl .. e 268
CantProceed. e 277
cantProceed.h 277
o= = G 155
cdCommands.ooi i e 120
GO .« it 22
CRG. . 63
cfgdirectory 32
Channel ACCESS.ot e 23
channel accesslink i 81
Channel AccessMonitors.o, 227
CHECK RELEASE. i 36
checkAlarms. 175
ChoICE ... 94
choice string - device definition. 103
classtemplates 261
ClEaN .. 40
ClockTime Reportt 153
ClockTime_Shutdown. 153
CMPLR. .. 70
comment - Database Definitions. 97
COMPAT 313, .. ittt e 34
COMPAT TOOLS 313 ... ittt i 34
compatibility configuration. 34
Compiler options.t 45
computeSizeOffset 315
CONFIG . .o e e e e 75
CONFIGfiles,usercreated.ccvvviininan... 63
CONFIG.. .o e e 76
CONFIG..COMMON.ot e e 76
CONFIG..vXWorksCommoncvviinenenan.n. 76
CONFIG.CommoN..o e e 76
CONFIG.CrossCommoON. . .. oo vt i e i i 75
CONFIG.gNUCOMMONttt 75
CONFIG.UnixCommon.Commonccvvvnn... 76
CONFIG ADDONS. e e 75
CONFIG BASE 75
CONFIG BASE VERSION ... 75
CONFIG COMMONt e e 75
CONFIG_COMPAT ...t e 76
CONFIG ENV ... e 75

CONFIG FILE TYPE. 75
CONFIG SITE.o 34,75
CONFIG SITE... ..o ot 76
CONFIG_SITE.COMMONoiiii ittt 77
CONFIG_SITE.COmMMON.vvti i i 76
CONFIG_SITE.Common.target.oovevnnennnn.. 34
CONFIG_SITE.Common.vxWorksCommon. 34
CONFIG_SITEhost.Commonc.ovvvieunn... 34
CONFIG_SITEhosthostottt 34
CONFIG_SITEhost.target, 34
CONFIG_ SITE ENV.........iiiiii 34,75
CONFIG USER.o 38
configuredirectory i 32
Configurefiles. ... i 75
configurefosFile. i 76
CONSTANT - link fieldvalue 106
constantlink 81
ConvertingR3.13AppsToR3.14.html 78
convertRelease 36
convertReleasepl ... 77
COreREIEaSE. . ..ot 157
COrEREIESE. . . oo 121
CreateTimer . ..ot 268
CrOSSTAIgELot 32
CROSS COMPILER_ HOST ARCHS 32
CROSS COMPILER_TARGET_ARCHS. 32, 35-36
CROSS OPT .ottt 70
CROSS WARNo 70
ovsclean. 40
cvsclean.pl. 7
cvt_dbaddr - Record Support Routine 178
cviBitsToUlong. 262
CVICharTOSHING - . oo v e e 262
cvtDoubleToCompactStringo oo 262
CVIDOUDIETOEXPSEING .« . oo v e e e e 262
CVIDOUDIETOSIING . .o vt 262
CvtFasth 262
CvtFloatToCompactString.« oo 262
CVIFIOAETOEXPSHING. .« v oo e e 262
CVEFOAtTOSIIING . . . o oo 262
cvitLongToHexString.o oo 262
cvtLongToOctalString. . ..o oo e 262
CVELONGTOSINNG . . - o o oo e e 262
CVEShortToString. oo 262
VtUcharTOSNNgot 262
cvtUlongToBItS.o 262
cvtUlongToStringo oo 262
CVEUShOrtTOStNG. . ..o 262
CXXCMPLR ..o 71
Cygwinbat. 79
D
database accessroutines- Listof 216
Database Definition.o ... 4344
Database DefinitionFile. 93
database definitions. o 93
DatabaseFiles. 44
Database Format - Summarycccoviian.. 93
databaselink 81
Database Link Guidelines. 84
Database LinkS 81

322 EPICS Application Developer’'s Guide

1/5/09

Chapter 23: INDEX

DatabaseLockingt 82
Database Scanningcoi i 83
DB .t 44,73
dbdirectory. 32
DBingtalfiles ... 45
DB _INSTALLS 45,73
DB MAX CHOICES. ...t 213
db pOSt eventSo 227
dba. .. 148
dbAccessh 213
dbAdd 214
doAddPath. 200
DBADDR ... i 215
ADAIIOCBASE . . .ot e et 198
dbAIIOCENLIY. . .o 199
dbAllocForm. e 208
ADEP. . .o 150
dbb. .. 150
dbBKptinit. 122
dbBUFferSize.o 223
AbC. .. 150
dbCaAddLink 229
dbCaAddLinkCallback il 229
dbCaGetAlarmLimits.......... ..o 232
dbCaGetAttributes 231
dbCaGetControlLimits. 232
dbCaGetGraphicLimits., 232
dbCaGetLink.ot 230
dbCaGEtPreCiSiON . . . oo vttt 232
AbCaGELSEVI . . ottt 231
dbCaGetTimeStampo e 231
dbCaGetUNitS . . . oo v 232
dbCaLinklnit. 121, 229
dbCaPalISE. . . . oot 123
dbCaPutLink 230
dbCaPutLinkCallback. 230
dbcar 156, 158
dbCaRemoveLink 230
dbCaRUN 123
dbCOPYENLIY . . oot 200
dbCopyEntryContents.ouiineiiii e 200
dbCopyRecord i 204-205
dbCreateRecord.t 204
dbCvtLinkToConstant.vvuii et 207
dbCvtLinkToPvIink. 207
DBD . 42-44, 72
dbd. .. 150
dbddirectory. 31
DBDingtalfiles...........co oo 44
DBD_INSTALLS. ... 44,73
doDefsh ... 213, 277
doDeletelnfo. 210
dbDeleteRecord. 204
DBDINC. ..o 42,72
doDumpBreaktable. 210
dbDUMPDEVICe. . ..ot 160, 210
doDumpDriver 161, 210
doDumpField 160
dbDUMPFIADES.ot 210
dbDumpFunction 210
doDUMPMeENU.o 160, 210
doDumpPath 210
dbDUMPRECOrd.o 210
dbDumpRecords. 161, 211

dbDumpRecordType
dbDumpRegistrar
dbDumpVariable
DBE_ALARM

DBF_DEVICE
DBF_DOUBLE

DBF_FLOAT
DBF_FWDLINK
DBF_INLINK

DBF_NOACCESS
DBF_OUTLINK
DBF_SHORT

DBF_STRING
DBF_UCHAR
DBF_ULONG
DBF_USHORT
dbFindBrkTable

dbFindRecord
dbFindRecordType
dbFinishEntry

dbFirstRecord
dbFirstRecordType

dbFoundField

dbGetFieldType
dbGetFormPrompt
dbGetFormValue

dbGetInfoName
dbGetl nfoPointer
dbGetInfoString

.. 219
dbGetLinkDBFtype.o 225
dbGetLinkField. 207
dbGetLinkType
dbGetM enuChoices.
dbGetMenulndex
dbGetM enul ndexFromString
dbGetM enuStringFroml ndex
dbGetNelements
dbGetNFields
dbGetNLinks
dbGetNMenuChoices

F 156

................................. 201
doFldTypesh. ... 213
................................. 202, 205

EPICS Release 3.14.10 EPICS Application Developer’'s Guide

323

Chapter 23: INDEX

dbGetNRecords.t 204
dbGetNReCOrdTYPES. oi ettt 201
dbGetPdbAddrFromLink 224
dbGetPrompt. 203
dbGetPromptGroup. . .« .o e et 203
dbGEtRANGE.ot 205
dbGetRecordAttribute. 203
dbGetRecordName 204
dbGetRecordTypeName 202
ObGERSEL . ..o 224
AbGEtStING. . . oo 205
dbgf .. o 148
ADgrEP . . oo 148
doher. ..o 152, 159
dbINitENtrY ... 199
dblnvisibleRecord. 205
Aoior .. e 151
dblsDefaultValue. o 205
dblsLinkConnected. i 224
dolsvValueField 224
dblsVisibleRecord. 205
Aol .. 147
dboLoadDatabasecoiii e 114
dbLoadRecords.o 115
doLoadTemplate. 115
dbLockGetLockld. ... 228
dbLocklnitRecordso 122, 228
dbLockSetGbILock. 228
dbLockSetGblUnlock 228
dbLockSetMerge.o 228
dbLockSetRecordLock 229
dbLockSetSplitSl 228
Aolsr. oo 158
domf.n. .o 263
domfFree. 263
domfFreeChunks. o 263
domflnit. 263
domfMalloc.coi e 263
domfShow. o 263
dbNameToAddr. 218
doNextField. ... 202
dbNextinfo o 209
dbNextRecord. i 204
dbNextRecordType.ot 201
dbNotifyAdd. 223
dbNotifyCancel 223
dbNotifyCompletion. ..., 223
dbnr. .. 149
AP, . 150
doPath 200
dbpf .. 148
AOpr . 149
AOPrOCESS ..o 226
AOPUL. ..o 221
doPutAttribute. 109, 226
doPutField. 220
dbPutForm. 208
dbPutinfo. 210
doPutinfoPointer. e 209
dbPutinfoString. 209
AbPULLINK . ..o 220
doPutMenulindex. e 206
dbPutNotify. 89, 221-222
dbPutNotifylnit. 122

dbPutRecordAttribute. 203
AoPUtSENNG . . .o 205
doPvdDUMP .. 161, 210
doPvdTableSize.t 123
DBR AL DOUBLE............ i 217
DBR AL LONGttt 217
DBR CHAR. ... e 217
DBR CTRL DOUBLEooiiiin. 217
DBR CTRL_LONG.ot 217
DBR DOUBLE 217
DBR ENUM. i 217
DBR ENUM STRS. e 217
dor_field typeinDBADDR............. ... 215
DBR FLOAT ... i e 217
DBR GR DOUBLE. ...t 217
DBR GR LONGottt 217
DBR LONG.o i 217
DBR PRECISIONt 217
DBR PUT ACKS 217-218
DBR PUT ACKT ... i 217-218
DBR SHORT ... e 217
DBR STATUS e 217
DBR STRING i 217
DBR TIME. ... e 217
DBR UCHAR ... e e 217
DBR ULONGo 217
DBR UNITS .. e 217
DBR USHORT. ...ttt 217
dbReadDatabase 200
dbReadDatabaseFP. 200
dbReadTest 117
dbRenameRecordo e 205
dbReportDeviceConfig. 210
AbS. .o e 150
dbScan.h e 241
dbScanFwdLink 226
dbScanLink. 226
dbScanLocK. ..ot 228
dbScanPassiVe. 226
dbScanUnlock. 228
dostat. . ..o e 151
dbtgf ... 157
dbToMenuH 111
dbToRecordtypeH 111112
dbtpf ... 157
0110 T 158
Aotr . 149
dbTrandateEscapecooviii 277
dbValueSize. 223
doVerify. ..o 205
dbVerifyForm 208
dbVisibleRecord 205
doWriteBreaktable o 200
dbWriteBreaktableFPl 200
dbWriteDevice 200
doWriteDeviceFPo e 200
dbWriteDriver. 200
dbWriteDriverFP. 200
doWriteFunctionFP. 200
doWriteMenu 200
dbWriteMenuFP 200
doWriteRecord 201
dbWriteRecordFP. 201
dbWriteRecordTypeo i e 200

324 EPICS Application Developer’'s Guide

1/5/09

Chapter 23: INDEX

dbWriteRecordTypeFP 200
doWriteRegistrarFP 200
dbWriteVariableFP o 200
DCT_FWDLINK ... e 198
DCT_INLINK. . 198
DCT_INTEGER.o 198
DCT_LINK_CONSTANT ...t 207
DCT_LINK_DEVICEot 207
DCT_LINK_FORMot 207
DCT_LINK PV . 207
DCT_MENU. ... 198
DCT_MENUFORMo 198
DCT_NOACCESSottt 198
DCT_OUTLINK . ..o 198
DCT_REAL .t 198
DCT_STRING ... 198
del_record. ... 192
EStIOY . . oot 268
devAddressMapt 311
devAlloCAddreSS. 311
devConnectinterrupt 313
devConnectinterruptVME. 312
devCreateMaskoovee i 312
devDisablelnterruptLevel o 313
devDisablelnterruptLevelVME. 312
devDisconnectinterrupt. 313
devDisconnectinterruptVMEo 312
devEnablelnterruptLevell 313
devEnablelnterruptLevelVME L 312
JEViCE . .o 94
device - database definition. L 102
Device Support Entry Tablet 171
devinterruptinUseVMEo 312
devNmMITODIg oo 312
devNORespoNseProbe. . ..ot 310
devReadProbe. 310
devRegisterAddress 311
devUnregisterAddress. 311
devWriteProbe 310
Directory namesrestriction., 33
Directory StrUCtUre oot 31
distclean ... 40
DLL_LIBS .. 51
DoCfile. .. 54
DOCS . . 54, 72
Documentation Directoryt 7
Documentation Files.oo i 78
dOS2UNiX.Pl . . e 7
AriVer . . 94
driver - database definition 103
Driver Support Entry TebleExample 194
drvet_name - driver definition., 103
ArVT S 314
DSET . i 171
dset-dbCommon i 185
dset_name - devicedefinition......................... 103
dtyp-dbCommon. ... 185
E
E2DB_FLAGS . .. i 73
Elementsof buildsystem 32

elAdd 264
elConCat. 264
elCount. 264
eiDelete 264
elEXtract. 264
dliFind. ... 264
elFirst. .. 264
elFree. ... 264
elGet. ... 264
elinit.. ... 264
elinsert. 264
ellast 264
eilibh ... o 264
ELLLIST . 264
eINEXt. ... 264
ELLNODE 264
eINStED. ... 264
eINth. 264
elPrevious. 264
diVerify. ... 264
EiC. .. 151, 166
eng_value - breakpointtable. 105
Environment Prerequisitescoviiiiiiiinn. 33
Environment Variables L 125
envPaths 119
EPICS . . 7,23

BasicAttributes. 23

Hardware/Software Platforms. 24

OVEIVIBW. . oottt 7
EPICS CA_ADDR _LIST 125
EPICS CA_AUTO_ADDR LISTcoiat 125
EPICS CA_CONN_TMO ...t 125
EPICS CA_MAX_ARRAY_BYTES 125
EPICS CA_REPEATER PORTcoovinn.. 125
EPICS CA_SERVER PORT..........oiiiiiiieenn 125
EPICS_ CAS BEACON_PERIOD. ... 125
EPICS HOST_ARCH 33-34
EPICS I0C_LOG_FILE_.COMMAND. 167
EPICS IOC_LOG FILE LIMIT............coviin 167
EPICS IOC_LOG_FILE NAME 167
EPICS IOC LOG_INET ..ot 125
EPICS IOC LOG PORT. ... 125, 168
EPICS THREAD_ONCE_INIT...........oviiiaa.n 296
EPICS TS NTP_INETo 125
EPICSAAreSSTYPE. . oottt 311
epicsAddressTypeNameoioiiiiii i 311
epicsAlgorithm.h. 261
BPICSASIEN o 284
EPICSALEXIt 261
epicsAtThreadEXit ...t 261
epicsConvert.h. 277
epicsConvertDoubleToFloat 277
epicsDYNLINKo 314
epicsEndianh ... 284
epicsEnvSet. 125
EPICSEMVShOW.o 126, 157
epicsEvent. ... 284
epicsEvent.h 284
EPICSEVENICreate.ottt 286
EPICSEVeNtDEStroy 286
epicsEventld 286
epicSEventMUSICreate 286
epicsEventMustWait 286
epicsEventShow 286

EPICS Release 3.14.10

EPICS Application Developer’'s Guide 325

Chapter 23: INDEX

epicsEventSignal 286
epicsEventTryWaltt 286
epicsEventWait 286
epicsEventWaitError. 285
epicSEventWaitOK 285
epiCSEVeNtWaitStatusSo oo e 285
epicsEventWaitTimeout 285
epicsEventWaitWithTimeout 286
epiCSEXIt 261
epicsEXItCAlALEXItS. 261
epicsExitCallAtThreadEXits.oov v 261
EPICSEXPOt . . vttt 15
epicsExportAddress 15, 104
EPiCSEXpOrtRegistrar. 15, 103
epicsFindSymbol 286
epicsFindSymbol.h....... 286
epicsGeneral Time. . ..ot 287
epicsGeneralTime.h i 287
ePICSGEtStderT. . ..o 294
EpICSGELSIiNo 294
EPICSGEtSIAOULot 294
epicsGetThreadStderr 294
epicsGetThreadStdin.o 294
epicsGetThreadStdout., 294
EpicsHOStAIrcho 79
EpicsHostArchpl ... 34,79
EPICSINLEITUPL . ..o 289
epicsinterrupt.h. 289
epicsinterruptContextMessageo oo 289
epicsinterruptisinterruptContext. 289
epicsinterruptLock 289
EpICSINtEITUPLTYPE oo vt 313
epicsinterruptunlock. 289
epicsMath 290
epicsMath.h. 290
EPICSMBX .« o v 261
epicsMessageQuUEelEt 290-292
epicsMessageQUEUECTEREo vt 292
epicsMessageQueueDEStIoy 292
epicsMessageQueuePending. 292
epicsMessageQueueReceive. i 292
epicsM essageQueueReceiveWithTimeout 292
epicsMessageQueueSend 292
epicsMessageQueueSendWithTimeout. 292
epicsMessageQUEUESNOW..o o v et 292
epicsMessageQueueTryReceive.c.oooviiiiian .. 292
epicsMessageQueueTrySend 292
EPICSMIN . oo 261
EPICSMULEX . . oo 292
epicsMutex.h. 292
EPICSMULEXCIEatE vttt 293
EPICSMULEXDESIIOYo o et 293
epicsMUtEXId.o 293
ePICSMULEXLOCKo 293
epicsMuUteXLOCKError.o 292
epicsMutexLockOK 292
epiCSMUtEXLOCKSEAUSo oo 292
epicsMutexLockTimeout, 292
epicSMUteXMUSICreate.o oo 293
epicsMutexMustLock 293
EPICSMULEXSNOW. . . . oot 293
epicsMutexShowAllo 293
epicsMutexTryLock 293
epicsMutexUnlock 293

epicsParamShow 157
EPICSPIiNtf . .. 165
EPICSPItENVParamso 126
epicsRegisterFunction. oL 15, 104
epicsRingBytesh 264
epiCSRINGBYteSCreate.o v vt 264
epicsRingBytesDelete. i 264
epicsRingBytesFlush 264
epicsRingBytesFreeBytes. oo 264
epicsRiNgBytesGet 264
epicsRIiNgBytesld 264
epicsRingBytesISEmMpty 264
epicsRingBytesIsFull 264
EPICSRINGBYLESPUL\ttt 264
EPICSRINGBYLESSIZE. . . .\ttt 264
epicsRingBytesUsedBytes 264
EPICSRINGPOINIErot 265
epicsRingPointer.h 265, 290
epicsRtemslnitHooks.h. oLl 121
epicsRtems! nitPostSetBootConfigFromNVRAM 121
epicsRtems| nitPreSetBootConfigFromNVRAM 120
epicsScanDouble. 294
epicsScanFloat 294
epicsSetThreadStderr ... 294
epicsSetThreadStdin. 294
epicsSetThreadStdout 294
epicsShareAPl. 279
EPICSSNArEFUNC. . . . ottt 279
EPICSSNPIintf . .. 294
EPICSSIAIO . . v 294
epicsStdio.n. 294
epicsStdioRedirect ... 295
epicsStdlib. 294
epicsStdlibho 294
epicsStdoutPrintf. 294
EPICSSITCAsECMP . o o v et 277
EPICSSIDUP. .« o oo 278
epicsStrGlobMatch 278
EPICSSIING.N . . 277
EPICSHNCASECIMNP & o vttt 277
epicsStrPrintEscaped. 278
epicsStrSnPrintEscaped 278
EPICSSHOM. . . .o 294
EPICSSEMOK I\t 278
BPICSOVAD .« .+« vttt et e 261
epicsTempFile. 294
epicsTempName 294
epicsThread.t 295, 299
epicsThread.h 295
epicsThreadBooleanStatus cooo v v 296
epicsThreadBooleanStatusFail 296
epicsThreadBooleanStatusSuccess.o veve et 296
epicsThreadCreate., 296-297
epicsThreadExitMain, 296-297
EPICSTHREADFUNC. ... 295
epicsThreadGetld, 296, 298
epicsThreadGetldSelf 296, 298
epicsThreadGetName, 296, 298
epicsThreadGetNameSelf........................ 296, 298
epicsThreadGetPriority. 296-297
epicsThreadGetPrioritySelf. 296-297
epicsThreadGetStackSize.t .. 296297
epicsThreadHighestPriorityLevelBelow. 296-297
epicsThreadld 296

326 EPICS Application Developer’'s Guide

1/5/09

Chapter 23: INDEX

epicsThreadInit. i 296
epicsThreadIsEqual., 296, 298
epicsThreadlsOKToBlockt 296, 298
epicsThreadisSuspended. 296, 298
epicsThreadL owestPriorityLevelAbove. 296, 298
epicsThreadOnce. 296297
epicsThreadOnceld.o, 296
epicsThreadPriorityChannel AccessServer 296
epicsThreadPriorityHigh. o o0 296
epicsThreadPriorityLOwW 295
epicsThreadPriorityMaX 295
epicsThreadPriorityMedium. 296
epicsThreadPriorityMin 295
epicsThreadPriorityScanHigh. 296
epicsThreadPriorityScanLow, 296
epicsThreadPrivateCreate. 297-298
epicsThreadPrivateDelete. 297-298
epicsThreadPrivateGet, 297, 299
epicsThreadPrivateld 297
epicsThreadPrivateSet., .. 297, 299
epicsThreadResUmet 296-297
epicsThreadRunable, 299
epicsThreadSetOkToBlockooovein ... 297-298
epicsThreadSetPriorityt 296-297
epicsThreadShow 297-298
epicsThreadShowAll.t 297-298
epicsThreadSleepot 296, 298
epicsThreadSleepQuantum. 296, 298
epicsThreadStackBig 296
epicsThreadStackMedium. ot 296
epicsThreadStackSizeClass.ot 296
epicsThreadStackSmall.t 296
epicsThreadSuspendSelf. 296-297
EPICSTIMEo 301-302, 304, 307
epicsTimeh. ... 301
epicsTimeEvent. 302, 304
epicsTimeGetCurrent 288
epicsTimeGetEvent.t 288
EPICSTIMEr . . e e 267-268
epicsTimerh 267
epicsSTimerid. 270
epicsTimerNotify o i 268
epicsTimerQueueActive 269
epicsTimerQueueld. oot 270
epicsTimerQueueNotifyo, 269
epicsTimerQueuePassiVet e e 269
EPICSTIMESIAMP . . o oottt et 301
epicsTypesh 278
epicsUnitTesth. o 279
EpICSVPriNtf. . . 165
epicsVsnprintf. 294
errlogListeners. 165
errlogAddListener. 165
erloghatal 164
errlogFlush 164
errlogGetSevEnumString 164
errlogGetSeVTOLOg. . .« vt 164
errloginfo 164
erloginit. 123, 166
erloginit2. 166
errloglistener 165
erlogMaor. 164
ErlOgMESSA0E. . . . oot 163
errlogMinor. o 164

errlogPrintf 163, 182
errlogRemovelistener. 165
errlogSetSEVTOLOg . . o v vt 164
errlogSevEnum 164
errlogSevPrintf 164
errlogSevVprintf o 164
errlogThread 166
errlogVprintf. ... 163
BITMESSA0E . . ot 164
errPrintf. ... 164-165
Escape SequenCe. 95
Event. ... 239
Event-ScanType. 239
EventScanning. ...t 244
EVNT - ScanRelated Field 240
BXIt. 251
Expanded Database DefinitionFiles. 44
Expanded DBDfiles. ... 43
expandVars.pl 76-77
EeXPANVArS.Pl .. 77
BT, . o e et 268
Extended devicesupport. 185, 190
Extensioncnfiguration o i 35
extra- field definitionrules. oo 98
extra_info - field definition. 100
F
Featuresof buildsystem.............................. 32
L= 94
field definitionrules o 98
field value - record instance definition 106
field_name- field definition 98
field_name - record instance definition. 106
field SizeiNDBADDR.t 215
field_type- field definition 98
field_typeinDBADDR. i 215
FIleTyYPES . oot 63
Filetypes,usercreated, 63
FILE_ TYPE ..o e 63
filename extension conventionso.uuan. 96
filterWarnings.pl 7
freeList.h. 273
freelistCalloC 273
freeListCleanup. 273
freeListFree. 273
freeListinitPvt. 273
freeListltemsAvail. o i 273
freeListMalloc. 273
fullpathname.pl 77
function. 15
functiontemplates. i 261
function_name - function definition.................... 104
function_name - registrar definition 103
FWDLINK .. 81
G
generadTime ... 287
generalTime_Init. 287

EPICS Release 3.14.10

EPICS Application Developer’'s Guide 327

Chapter 23: INDEX

general TimeCreateSyncTimer, 288
genera TimeCurrentTpNameooveeviiin e 287
genera TimeCurrentTpRegisteroovve.n. 288
genera TimeEventTpName.ooiaa.. 287
genera TimeEventTpRegistert 288
genera TimeGetErrorCounts. 287
general TimeGetExceptPriority 288
genera TimeReport . ..ot 153, 287
general TimeResetErrorCounts, 287
genera TimeSup.h. 288
get_alarm_double Record Support Routine 181
get_array_info - Record Support Routine. 179
get_control_double - Record Support Routine. 181
get_enum_str - record Support Routine 180
get_enum_strs - record Support Routine 180
get_graphic_ double-example, 174
get_graphic_double - Record Support Routine. 180
getioint_info 243
get_ioint_info - device support routine. 189
get_precision - Record Support Routine. 179
get_units-.example 174
get_units - Record Support Routine 179
getExpireDelay 268
getExpirelnfo 268
Ot e 159
GNUMAKE 33
ONUMBKE 39
gPhAdd 274
gpHash.h. .. 273
gphDeElete 274
gPhDUMP. .« . e 274
gphDUMPFP . .. 274
GPHENTRY ... 273
gphFind. 274
gphFreeMEm. o 274
gphlnitPVt . . 273
GPIB_IO-linkfieldvalue 107
OrECOrd . .ot 95
gui_group - field definition. oo 99
Guidelines for Asynchronous Records. 87
Guidelinesfor SynchronousRecords. 86
H
HAG . 128-130
Header dependencies oL, 41
7= o 251
Host makefiletargets. 37
HOST _OPT . . e 70
HOST_WARN ... e 70
PPUX. .« o 78
Html 54
htmidirectory 32
HTMLS. e 54, 72
HTMLS DIR . 72
I/OEvent-Scan Type. . ..o oove e 239
I/OEventscanned.coiiiiiiinneii... 239

I/OEBEvent Scanning.oooveenei e 242, 245
INC . 54,71
include. 94
include - Database Definitions 96
includedirectory 31
Include File Generation., 111
Includefiles.o 54
INfiNItELOOP . .« .ot 88
INFIX_TO POSTFIX_SIZE ...t 257
info_name - record instance definition.................. 108
info_value - record instance definition. 108
Infomationitempointer 109
Informationltem. 109
init - device SUPPOrt routingoovvveveinnneann. 189
init - Record Support Routine. 178
init_record - device support routine 189
init_record-example i 172
init_record - record supportrouting 178
init_value- field definition 99
initDatabase. 122
INDEVSUD .. 122
INIEDIVSUD. .« . oo 121
initHookFunctiono 124
initHookName. 124
initHookRegister. 124
INEHOOKS. oo 124
initHookState 124
initial - field definitionrules. o L 98
InitidizeLoggingo oo 126
INItialProcess. 122
initPeriodic 246
INITRECSUP. . . .o 122
INLINK . 81
INP - access security configuration. 130
Input/Output Controllercccoiiviiiiiiinna.. 7
Hardware/Software Platforms. 24
Software Components.t 25
INPUTRC . . .o 252
INST_IO-linkfieldvalue, 107
Install Directories 31
Install Directory definitions 35
INSTALL_LOCATION ...\ 31, 35,74
installEpics.plo 7
Installing Other Binaries.ccoiiiiiinonn.. 60
Installing Other Librariest 60
installLastResortEventProvider 153, 287
interest - field definitionrules., 98
interest_level - field definition 100
INterruptACCEpto 123
IOC . 23
See Input/Out Controller
IOCEror Logging . . -« vvvvi e e e 163
loc makefiletargets. 37
jocBuild. 121, 123
10CCIOCK . . . 314
OCINIt ..o 121
iocLogClient.o 168
focLoglnito 126
10CLOgSEIVEr . .. 167
jocPaUSe ... 121, 123
JOCRUN. ..o 121, 123
I0CSN . oo 252
jocsh.h. ..o 252
IOCSH_HISTSIZE. ... 252

328 EPICS Application Developer’'s Guide

1/5/09

Chapter 23: INDEX

IOCSH_PSL ... 252
I0CShAID .. 253
iocshCmd 252
focshFuncDef 253
I0CShREgIStEr. . ..o 15, 253
iocshSystemCommand 251
ISINf . 290
ISNAN ..o 290
1SO Gt e 261
J
JAR 62, 73
JARLINPUT oo 62, 73
JAR_MANIFEST ... 62, 73
JAVA L 61-62, 73
javaCheaderfile............. ... i, 73
Javaclassfiles. i 61
Javaclasses. ... 73
JavaBExample 62
Javajarfile ... 62
Javanativemethods i 63
JAVAINC. . oo 63, 73
javaibdirectory 32
K
Keywords 94
KnownProblemshtml, 78
L
LAN 23
LeXandyaC.o 54
LEXOPT .. 73
libdirectory. 32
LIB_INSTALLS. ... e 60, 74
LIB_LDFLAGS ... 71
LIB_LIBS. e 50, 69
LIB_.OBJLIBS 49, 68
LIB_OBJS. . ..t 48, 67
LIB_RCS .. 61
LIB_SRCS ...t 48, 66
LIB_.SYS LIBS 51, 69
LIBOBIS. . . oottt 49
Libraries 46
libraries. 50
LIBRARY . 65
Libraryexample 51
Library linkorder i 50
libraryname 47
Library objectfile......... i 48
Library Sourcefile i i 47
Library versonnumber. oo 51
LIBRARY, SCRIPTS e 37
LIBRARY_HOST. ... 47, 6465
LIBRARY_IOC ... 47, 65
LIBSRCS .. 48, 67

Linear Conversion.oouiiiienaiinaann.. 109
liNk OptioNS. . ..o 45
link.h. 213
LINK_ALARM. ... i 82
link_type - devicedefinition., 102
LINR . 109
Loadablelibraries. i 52
LOADABLELIBRARY ...\t 66
LOADABLE_LIBRARY ... 52
LOADABLE LIBRARY HOSTc.v... 52, 66
Local AreaNetwork

Hardware/Software Platforms. 24
logClientCreate. 274
logClientFlush. i 274
logClientldo 274
logClientlnit 274
logClientSend 274
logClientSendMessageo 275
logClientShow. i 274

M

macCreateHandle 275
macDeleteHandle 276
macEnvEXxpand. 276
MaCEXPandStringt 275
macGetValue. 275
macinstallMacroso 276
macLibh. 275
macParseDefnso 276
MAaCPOPSCOPE . . . o et 276
MaCPUShSCOPE . . . oot 276
macPutValue. 275
MaCcRePOItMacros.o 276
Macro Substitution 95
Macro Substitutionsand Includetool 14
macSuppressWarningo 275
MaKe . . 39
Makecommands.t 39
MaketargetSo oo 40
makeConfigAppincludepl i 77
makeDbDepends.pl. 4,77
Makefile 76
Makefilecontents 38
Makefileexamples 39
Makefilename. o 38
Makefiles.o 38
makelncludeDbd.pl........... ... 77
makeMakefilepl o 7
makeTestfilepl ... 77
MallOC . ..o 277
mallocMustSucceed 277
MAX_STRING_SIZE ... 213
Maximize SeVErity 82
0= 0T P 94
menu - field definitionrules oo oL 98
MENUCONMVEIT.t 109
MENUS 42
menuScandbd. 240
mkmfpl. . 7
module types.h. 314
MONItOr - eXamMPle. . ..o 176

EPICS Release 3.14.10

EPICS Application Developer’'s Guide 329

Chapter 23: INDEX

MOTLOAD. . .ot e e 21
M. 82
Ml 14
10 44
Multiple Definitions 96
Multiplehost.o 32
MUNCh.pl . .. 7
0017/ o 77
N
name- breakpointtable. 105
name CFLAGS. 46, 69
name CPPFLAGS i 46, 70
name CXXFLAGS. ...t 46, 70
name DIR. ... 68
name DLL_LIBS. 51
name INCLUDES 46, 70
name LDFLAGSt 46,71
name LDOBJS. it 49, 56, 68
name LIBS. 50, 58, 68
name OBJLIBS ...t 49, 56, 68
name OBJS. i 49, 56, 67
name RCS 61, 73
name SNCFLAGS i i 73
name SRCS.......... ... i, 48, 53, 57, 67
name SYS LIBS ... 50, 58, 69
NM S 82
no_elementsinDBADDR 215
NOTRAPWRITE ... oo 129
NP . 82
NT P o 287
NTPTIime Reportt 153
0]

Object Files. . ..o 52
OBILIB. .o 52, 66
OBILIB_OBJS.ot 52, 66
OBJLIB_SRCS. .. ottt 52, 66
OBJS. . i 37,52, 72
OBJS HOST . ..ot i 52,72
OBJIS IOC ..ottt i e 52,72
Operator Interface

Hardware/Software Platforms. 24
Ol 23
OS CLASS. . 37
OSClaSS. . . 36, 64
OS|_PATH_LIST SEPARATOR...........cciivii... 279
OSI_PATH_SEPARATORttt 279
osiFindGlobalSymbol o 286
osiMutex.h 308
osiPoolStatus.h 308
OSIProcessh. 309
0SISEM.N .o 309
osiSigPipelgnore.h 309
osiSock.h. 276, 310
osiSufficentSpacelnPool 308
OUTLINK . ¢ e 81
override. 33-35,59, 75

Overview of Record Processingot 169
P
PassiVe. . ..o 239
Passive- SCan Type. . ..o oo 239
path . .. 94
path - Database Definitions., 96
Pathrequirements. 33
pdbbase. ... 197
Periodic-ScanType. 239
PeriodicScanning. 246
periodicTasko 247
Pl 33
pfieldinDBADDR 215
pfldDesinDBADDR ... 215
I 159
PHAS-ScanRelated Field. 240
POS X . 42
POSIX CSOUICECOE . . . oo 42
post_event.coiii 242, 245
POSHiX . e 257
POSHiX.N. Lo 257
PP 82
pp - field definitionrules. oL 98
pp_value- field definition. oo 100
PPCBUG. . .o 21
precord-DBADDR 215
PRIO-ScanRelated Field 240
Process- eXamplet 173
process - Record Support Routine 178
process - record support routine i 84
ProcessPassiVe. 82
PROD .. 37, 55, 64
PROD_HOST .. 55
PROD _IOC. .. 55, 64
PROD_LDFLAGS ... 71
PROD_LIBS. ... 57-58, 68
PROD OBJLIBS ... 56, 68
PROD _OBJS. ... 56, 67
PROD_RCS ... 61
PROD_SRCS ...t 57, 66
PROD_SYS LIBS ... e 58, 69
PROD_VERSION. 58
product libraries i 50, 57
Product linkorder i 58
Product NAME.o ot 55
product objectfile....... 55
product sourcefile. 57
product versionnumber 58-59
Products. 55
prompt - field definitionrules. 98
prompt_value- field definition 99
.. 98
Psuedofield. ... 109
put_array_info - Record Support Routine. 179
put_enum_str - Record Support Routine 180
PUtNOLITY . . .o 89
putNotifyCanceledo 223
putNotifylnit. 222
PUtNOtifyOK 223
PV_LINK -link fieldvalue. 106

330 EPICS Application Developer’'s Guide

1/5/09

Chapter 23: INDEX

PVNAME SZ. ... 213
Q
QuUOtEd SENNG . ..o 95
R

RANLIBFLAGS. ... e 73
raw_value - breakpointtable. 105
RCS. . 61, 73
README.LSt ..o 78
README.CHIS. . ..o 78
README.darwinhtml 78
README.NPUX. . .. oot 78
README.htMI 78
README.MS WINDOWS. ... 78
README.NICPUO30. . . .o ooee e e e e e e e 78
READMEtrUB4UNIX oo 78
realclean 40
reauninstall 40
rebuild. 40
recGbIDbaddrError. 182
recGblFwdLink. 183
recGblGetAlarmDouble 183
recGblGetControlDoubleooinn. 183
recGblGetGraphicDouble. 182
recGhlGetPrec. 183
recGhlGetTimeStampo 183
recGblInitConstantLink 183
recGblRecordError 182
reCGhIRECSUPEITOrt 182
recGblResetAlarms. 181
recGhlSetSevr.o 181
TECOMA . .ot 95
recordattribute 109
record instance - database definition. 106
Record Instance File. ..., 93
Record Processing.o v e 84
Record Support Entry Table 170
record type - Database Definition. 97
Record Type Definitions.t 42
record_name - record instance definition. 106
record_type - devicedefinition............. 102
record_type - record instance definition. 106
record_type - record type definition 98
L= 0700117/ o= 94
Registering routinesfor DBDfiles. 44
Registering support routines. 44
registerRecordDeviceDriver oo 316
registerRecordDeviceDriver.c......................... 316
registerRecordDeviceDriverpl 316
TEOISrar . . e 15, 95, 254

IOCSh CoMMANdSo v 254
registrar - database defintion. 103
Registry.h 315
registryAdd 315
registryDeviceSupport.h. L. 315
registryDeviceSupportAdd 315
registryDeviceSupportFind.o 315

registryDriverSupport.h 316
registryDriverSupportAdd. 316
registryDriverSupportFind oo 316
registryDumpo 315
registryFind. 315
FEQISITYFIEe. . . 315
registryFunction.h. 316
registryFunctionAdd. 316
registryFunctionFind. o 316
registryFunctionRef 316
registryFunctionRefAdd 316
registryRecordTypeAdd, 315
registrySetTableSize 315
RELEASE. 35-36, 75
FEl BB . . oot 269
RELEASE DBDFLAGSt 36
RELEASE_INCLUDES. ..ottt 35-36
RELEASE_NOTEShtml ... 78
ReleaseChecklist.html. ot 78
replaceVARDl . ..o 77
report - devicesupportroutine 189
report - Record Support Routine. 177
resourcefiles. ... 61
resourceLib.h. o 262
RF_1O-linkfieldvalue 108
NGPOINTEN. 265
ringPointerCreatet 266
ringPointerDelete 267
ringPointerFlush 267
ringPointerGetFree 267
ringPointerGetSize 267
ringPointerGetUsed. 267
ringPointerld. ... 266
ringPointerlsEmpty. 267
ringPointerlsFull 267
rMngPoINtErPop 267
ringPointerPush. 267
ROET . 170
RSET -examplet 171
ISV NI, L 123
FSIV_PAUSE. .« . ottt et e e e e 123
TSIV _TUN. oo e et e s 123
RTEMS . . 33
RULE .. 130
RULES .. 75
RULESfiles,usercreated., 63
RULESDD ... 75
RULESIOC .. oo 76
RULES ARCHS. e 76
RULES BUILD ... 76
RULES DIRS. ..o 76
RULES EXPAND 76
RULES FILE TYPE oo 76
RULES JAVA . 76
RULES TARGETot 76
RULES TOP. . .. 76
TUNTESE. . o e 280
runTestFunc. 279
S
SCAN - ScanRelated Field 239

EPICS Release 3.14.10

EPICS Application Developer’'s Guide 331

Chapter 23: INDEX

ScanOnce- SCan TypPe. . ..o v e 239
Scan Related Database Fields. 239
SCAN_1IST PERIODIC. ... 241
SCANAAD. . ..o 241
SCaNDElEte. . .. 241
SCANINIt ... 241
scanlolnit. 245
scanloRequest. 246
SCANONCE. . ottt et 124, 247
scanONCceSatQUEUESIZE.o i e 123, 247
SCANPALSE . ..o 123, 241
SCANPEL. . o 152
SCANPENiOd. 242
SCANPIOl . oo 152
SCANPPl 152
SCANRUN. .« .ottt e e e 123, 241
SCH2EDIF_ FLAGS. i 73
SCRIPT . .o 53
SCRIPT_HOST ... 53
SCRIPT_IOC 53
SCRIPTS. .. 71
SIS . ottt 53
SCRIPTS HOST e 71
SCRIPTS IOC . ..ot 71
SecPastEpOCh. . ..o 301
SHARED_LIBRARIES..................... 33, 47,59, 65
sharelibh. ... i 279
SNOW oot 251
SHRLIB_VERSION. ... 51, 66
Site specific Configuration 34
Sitecshre. 79
Siteprofile. 79
size-field definitionrules. oo 98
size value- field definition., 100
IS oo LY @ela V7= = o o [P 109
SNCFLAGS ... oot 73
Sourcefiledirs 41
SPC_ALARMACK. 99
SPC AS . 99
SPC CALC. ... 100
SPC_DBADDR.t 100
SPC LINCONV ... 100
SPC MOD .. 100
SPC_NOMOD ...ttt 99
SPC RESET ...t 100
SPC SCAN. ... 99
specid - field definitionrules 98
special - Record Support Routine. 178
specia iINDBADDR 215
special_value- field definition 99
Specifyinglibraries. o 57
Specifying librariesdependancies. 50

Y e e e e e e e e 251
src/tool File. ..o 7
SRC DIRS 41
SRCS. ... 47, 57, 66
standard C++library. ... 261
A L 268
Startup File Descriptions. oooi i 79
Startup Files 78
Startupfiles. 78
State Notation Programs., 53
statichuilds. 59
STATIC BUILD 59, 71

SAUSCOUES. . . oot 166
S IMAX. . e e 261
S MmN . . 261
S SWaAD . . 261
STRICT . oo e 70
SO0 . . o 294
structdbAddr ... 214
SITUCEASXE . oot e 191
struct putNotify o 222
substitutionfile 44
substitutionsfile o 45
synchronous device supportexample. 185
SYSPROD LIBSot 58, 69
LS Y 2 251
T

T_A specificdefinitions 37
Table of Makefiledefinitions 64
TARGETS. ... 60, 74
task_params.h........ 314
taskWa. N L 237
taskwdAnylnsert. 238
taskwdAnyRemove. 238
taskwdlnit 121
taskKWAINSEIt . oo e 237
taskwdMOonitorot 237
taskwdMonitorAdd. 237
taskwdMonitorDel 237
taskwdReMove 237
taskwdShow 238
TCLIbraries. . .oovo e e 61
TCLINDEX. .ot 61, 72
TCLLIBNAME. e 61, 72
templatefile. o 4445
TEMPLATES . ..o 54,72
Templates 54
templates.o 261
templatesdirectory 32
TEMPLATES DIR. ..ot 72
TERM .« 252
Test

Harness. ... 279
Test Products. . .. oot 59
Test SCriPtS . oo e 59
tEStADOMt . . . e 279
1= 1D - o P 279
IeStDONE ... 279
testFail. ..o e 279
teStHAaNESS . ..o 279
TESTIAVA .. 61-62, 73
testMainh e 280
TEStOK ottt 279
tEStOKL ..t 279
tEStOKY ot e 279
LESEPASS . . . ot 279
teStPlan ..o e 279
TESTPROD ...ttt 37,59, 64
TESTPROD HOST ...t 59, 64
TESTPROD IOCttt 59, 64
TESTSCRIPTS. ... e 59, 65

332 EPICS Application Developer’'s Guide

1/5/09

Chapter 23: INDEX

TESTSCRIPTS HOST. ...\t eees 60, 65
TESTSCRIPTS IOC . ..ottt 60, 65
St SKIP . e 279
testTodoBegin. 279
testTOdOENd . ..o 279
TimeBvent ... 287
timeprovider. 287
10 01 P 31
TOrNadOo 33
1103 159
TRAD .o 70
TRAPWRITE 129, 144
truncateFile. 279, 294
truncateFileh 279
tsBTreeh. 263
tSDLLISth. ..o 263
tsFreelisth. oo 263
tsMinMax.h. ... 263
tSSLLiSth .o 263
type- variabledefinition. o o 104
u
UAG . 128-130
UDF . . e 176
UDf L 176
uninstall. 40
uUnquoted Stringo oot 95
useManifestTool.pl 77
User created configfiles. ... it 63
User specificoverride. 38
USER DBDFLAGS.t 43
USER VPATH ... e 74
USR ARFLAGS. e 73
USR CFLAGS. ... e 45, 69
USR CPPFLAGS. ... e 45,70
USR CXXFLAG ..ot 45

USR CXXFLAGS . ..o 70
USR DBDFLAGSo 72
USR DBFLAGS. ... e 73
USR INCLUDES. 45,70
USR JAVACFLAGS. 61-62, 73
USR_ JAVAHFLAGS 63, 73
USR LDFLAGS. . ..o 46, 71
USR LIBS ... 50, 57-58, 68
USR OBIIBS. ... 49, 56, 67
USR OBJS. ... 48, 55, 67
USR SRCS. ... 48, 57, 66
USR SYS LIBS. ... 51, 58, 69
\Y
VALID BUILDS ... 37
VA 251
variable 15, 95
variable_name - variable definition. 104
VECHISE o 156, 314
VME_IO-link fieldvalue 107
vxComLibrary. 314
VXI_IO-linkfieldvalue 108
UXWOIKS . 33
vxWorks startup script 120
w
WIN32.0at. . .. 79
Y
YACCOPT .ttt 73

EPICS Release 3.14.10

EPICS Application Developer’'s Guide 333

Chapter 23: INDEX

334 EPICS Application Developer’'s Guide 1/5/09

	EPICS Application Developer’s Guide
	Table of Contents
	Chapter 1: Introduction
	1.1 Overview
	1.2 Acknowledgments

	Chapter 2: Getting Started
	2.1 Introduction
	2.2 Example IOC Application
	2.2.1 Check that EPICS_HOST_ARCH is defined
	2.2.2 Create the example application
	2.2.3 Inspect files
	2.2.4 Sequencer Example
	2.2.5 Build
	2.2.6 Inspect files
	2.2.7 Run the ioc example

	2.3 Channel Access Host Example
	2.4 iocsh
	2.5 Building IOC components
	2.5.1 Binding to IOC components
	2.5.2 Makefile rules
	2.5.2.1 Building a support application.
	2.5.2.2 Building the IOC application

	2.6 makeBaseApp
	2.6.1 Usage
	2.6.2 Environment Variables:
	2.6.3 Description
	2.6.4 Tag Replacement within a Template
	2.6.5 makeBaseApp templetes provided with base
	2.6.5.1 support
	2.6.5.2 ioc
	2.6.5.3 example
	2.6.5.4 caClient
	2.6.5.5 caServer

	2.7 vxWorks boot parameters
	2.8 RTEMS boot procedure
	2.8.1 Booting from a BOOTP/DHCP/TFTP server
	2.8.2 Motorola PPCBUG boot parameters
	2.8.3 Motorola MOTLOAD boot parameters
	2.8.4 RTEMS NFS access
	2.8.5 RTEMS ‘Cexp’

	Chapter 3: EPICS Overview
	3.1 What is EPICS?
	3.2 Basic Attributes
	3.3 Hardware - Software Platforms (Vendor Supplied)
	3.3.1 OPI
	3.3.2 LAN
	3.3.3 IOC

	3.4 IOC Software Components
	3.4.1 IOC Database
	3.4.2 Database Access
	3.4.3 Database Scanning
	3.4.4 Record Support, Device Support and Device Drivers
	3.4.5 Channel Access
	3.4.6 Database Monitors

	3.5 Channel Access
	3.5.1 Client Services
	3.5.2 Search Server
	3.5.3 Connection Request Server
	3.5.4 Connection Management

	3.6 OPI Tools
	3.6.1 Examples of channel Access Tools
	3.6.2 Examples of other OPI Tools

	3.7 EPICS Core Software

	Chapter 4: EPICS Build Facility
	4.1 Overview
	4.1.1 <top> Directory structure
	4.1.2 Install Directories
	4.1.3 Elements of build system
	4.1.4 Features
	4.1.5 Multiple host and target systems

	4.2 Build Requirements
	4.2.1 Host Environment Variable
	4.2.2 Software Prerequisites
	4.2.3 Path requirements
	4.2.3.1 Unix path
	4.2.3.2 Win32 PATH

	4.2.4 Directory names
	4.2.5 EPICS_HOST_ARCH environment variable

	4.3 Configuration Definitions
	4.3.1 Site-specific EPICS Base Configuration
	4.3.1.1 Site configuration
	4.3.1.2 Host configuration
	4.3.1.3 Target configuration
	4.3.1.4 R3.13 compatibility configuration

	4.3.2 Directory definitions
	4.3.3 Extension and Application Specific Configuration
	4.3.4 RELEASE file
	4.3.5 Modifying configure/RELEASE* files
	4.3.6 Specifying osclass specific definitions
	4.3.7 Specifying T_A specific definitions
	4.3.8 Host and Ioc targets
	4.3.9 User specific override definitions

	4.4 Makefiles
	4.4.1 Name
	4.4.2 Included Files
	4.4.3 Contents of Makefiles
	4.4.3.1 Makefiles in directories containing subdirectories
	4.4.3.2 Makefiles in directories where components are to be built

	4.4.4 Simple Makefile examples

	4.5 Make
	4.5.1 Make vs. gnumake
	4.5.2 Frequently used Make commands
	4.5.3 Make targets
	4.5.4 Header file dependencies

	4.6 Makefile definitions
	4.6.1 Source file directories
	4.6.2 Posix C source code
	4.6.3 Breakpoint Tables
	4.6.4 Record Type Definitions
	4.6.5 Menus
	4.6.6 Expanded Database Definition Files
	4.6.7 Registering Support Routines for Expanded Database Definition Files
	4.6.8 Database Definition Files
	4.6.9 DBD install files
	4.6.10 Database Files
	4.6.11 DB install files
	4.6.12 Compile and link command options
	4.6.12.1 Options for all compile/link commands.
	4.6.12.2 Options for a target specific compile/link command.

	4.6.13 Libraries
	4.6.13.1 Specifying the library name.
	4.6.13.2 Specifying library source file names
	4.6.13.3 Specifying library object file names
	4.6.13.4 LIBOBJS definitions
	4.6.13.5 Specifying dependant libraries to be linked when creating a library
	4.6.13.6 The order of dependant libraries
	4.6.13.7 Specifying library DLL file names (deprecated)
	4.6.13.8 Specifying shared library version number
	4.6.13.9 Library example:

	4.6.14 Loadable libraries
	4.6.15 Combined object libraries (VxWorks only)
	4.6.16 Object Files
	4.6.17 State Notation Programs
	4.6.18 Scripts, etc.
	4.6.19 Include files
	4.6.20 Html and Doc files
	4.6.21 Templates
	4.6.22 Lex and yac
	4.6.23 Products
	4.6.23.1 Specifying the product name.
	4.6.23.2 Specifying product object file names
	4.6.23.3 Specifying product source file names
	4.6.23.4 Specifying libraries to be linked when creating the product
	4.6.23.5 The order of dependant libraries
	4.6.23.6 Specifying product version number
	4.6.23.7 Product static builds

	4.6.24 Test Products
	4.6.25 Test Scripts
	4.6.26 Miscellaneous Targets
	4.6.27 Installing Other Binaries
	4.6.28 Installing Other Libraries
	4.6.29 Win32 resource files
	4.6.30 TCL libraries
	4.6.31 Java class files
	4.6.31.1 Example 1
	4.6.31.2 Example 2

	4.6.32 Java jar file
	4.6.32.1 Example 1
	4.6.32.2 Example 2

	4.6.33 Java native method C header files
	4.6.33.1 Example

	4.6.34 User Created CONFIG* and RULES* files
	4.6.35 User Created File Types

	4.7 Table of Makefile definitions
	4.8 Configuration Files
	4.8.1 Base Configure Directory
	4.8.2 Base Configure File Descriptions
	4.8.3 Base configure/os File Descriptions
	4.8.4 Base src/tool File Descriptions

	4.9 Build Documentation Files
	4.9.1 Base Documentation Directory
	4.9.2 Base Documentation File Descriptions

	4.10 Startup Files
	4.10.1 Base Startup Directory
	4.10.2 Base Startup File Descriptions

	Chapter 5: Database Locking, Scanning, And Processing
	5.1 Overview
	5.2 Record Links
	5.3 Database Links
	5.3.1 Process Passive
	5.3.2 Maximize Severity

	5.4 Database Locking
	5.5 Database Scanning
	5.6 Record Processing
	5.7 Guidelines for Creating Database Links
	5.7.1 Rules Relating to Database Links
	5.7.1.1 Processing Order
	5.7.1.2 Lock Sets
	5.7.1.3 PACT - processing active
	5.7.1.4 Process Passive: Link option
	5.7.1.5 Process Passive: Field attribute
	5.7.1.6 Maximize Severity: Link option

	5.8 Guidelines for Synchronous Records
	5.9 Guidelines for Asynchronous Records
	5.9.1 Infinite Loop
	5.9.2 Obtain Old Data
	5.9.3 Delays
	5.9.4 Task Abort

	5.10 Cached Puts
	5.11 putNotify
	5.12 Channel Access Links
	5.12.1 INLINK
	5.12.2 OUTLINK
	5.12.3 FWDLINK

	Chapter 6: Database Definition
	6.1 Overview
	6.2 Brief Summary of Database Definition Syntax
	6.3 General Rules for Database Definition
	6.3.1 Keywords
	6.3.2 Unquoted Strings
	6.3.3 Quoted Strings
	6.3.4 Macro Substitution
	6.3.5 Escape Sequences
	6.3.6 Define before referencing
	6.3.7 Multiple Definitions
	6.3.8 filename extension
	6.3.9 path addpath
	6.3.10 include
	6.3.11 comment

	6.4 Menu
	6.5 Record Type
	6.5.1 Format:
	6.5.2 rules
	6.5.3 definitions
	6.5.4 Example

	6.6 Device
	6.6.1 Format:
	6.6.2 definitions
	6.6.3 Examples

	6.7 Driver
	6.7.1 Format:
	6.7.2 Definitions
	6.7.3 Examples

	6.8 Registrar Declaration
	6.8.1 Format:
	6.8.2 Definitions
	6.8.3 Example

	6.9 Variable Declaration
	6.9.1 Format:
	6.9.2 Definitions
	6.9.3 Example

	6.10 Function Declaration
	6.10.1 Format:
	6.10.2 Definitions
	6.10.3 Example

	6.11 Breakpoint Table
	6.11.1 Format:
	6.11.2 Definitions
	6.11.3 Example

	6.12 Record Instance
	6.12.1 Format:
	6.12.2 definitions
	6.12.3 Examples

	6.13 Record Information Item
	6.14 Record Attribute
	6.15 Breakpoint Tables - Discussion
	6.16 Menu and Record Type Include File Generation.
	6.16.1 Introduction
	6.16.2 dbToMenuH
	6.16.3 dbToRecordtypeH

	6.17 dbExpand
	6.18 dbLoadDatabase
	6.18.1 EXAMPLE

	6.19 dbLoadRecords
	6.20 dbLoadTemplate
	6.20.1 EXAMPLE

	6.21 dbReadTest

	Chapter 7: IOC Initialization
	7.1 Overview - Environments requiring a main program
	7.2 Overview - vxWorks
	7.3 Overview - RTEMS
	7.4 IOC Initialization
	7.4.1 Set Task Flags
	7.4.2 General Purpose Modules
	7.4.3 Channel Access Links
	7.4.4 Driver Support
	7.4.5 Record Support
	7.4.6 Device Support
	7.4.7 Database Records
	7.4.8 Device Support again
	7.4.9 Scanning and Access Security
	7.4.10 Initial Processing
	7.4.11 Channel Access Server
	7.4.12 Enable Record Processing
	7.4.13 Enable CA Server

	7.5 IOC Pausing
	7.6 Changing iocCore fixed limits
	7.6.1 callbackSetQueueSize
	7.6.2 dbPvdTableSize
	7.6.3 scanOnceSetQueueSize
	7.6.4 errlogInit

	7.7 initHooks
	7.8 Environment Variables
	7.9 Initialize Logging

	Chapter 8: Access Security
	8.1 Overview
	8.2 Quick Start
	8.3 User’s Guide
	8.3.1 Features
	8.3.2 Limitations
	8.3.3 Definitions
	8.3.4 Access Security Configuration File
	8.3.4.1 Simple Example
	8.3.4.2 Syntax Definition
	8.3.4.3 Discussion

	8.3.5 ascheck - Check Syntax of Access Configuration File
	8.3.6 IOC Access Security Initialization
	8.3.7 Database Configuration
	8.3.7.1 Access Security Group
	8.3.7.2 Subroutine Record Support
	8.3.7.3 Record Type Description

	8.3.8 Example:

	8.4 Design Summary
	8.4.1 Summary of Functional Requirements
	8.4.2 Additional Requirements
	8.4.2.1 Performance
	8.4.2.2 Generic Implementation
	8.4.2.3 No Access Security within an IOC
	8.4.2.4 Defaults
	8.4.2.5 Access Security is Optional

	8.4.3 Design Overview
	8.4.3.1 Configuration File
	8.4.3.2 Access Security Library
	8.4.3.3 IOC Database Access Security
	8.4.3.4 Channel Access Security

	8.4.4 Comments
	8.4.5 Performance and Memory Requirements

	8.5 Access Security Application Programmer’s Interface
	8.5.1 Introduction
	8.5.2 Definitions
	8.5.3 Initialization
	8.5.4 Group manipulation
	8.5.4.1 add Member
	8.5.4.2 remove Member
	8.5.4.3 get Member Pvt
	8.5.4.4 put Member Pvt
	8.5.4.5 change Group

	8.5.5 Client Manipulation
	8.5.5.1 add Client
	8.5.5.2 change Client
	8.5.5.3 remove Client
	8.5.5.4 get Client Pvt
	8.5.5.5 put Client Pvt
	8.5.5.6 register Callback
	8.5.5.7 check Get
	8.5.5.8 check Put
	8.5.5.9 asTrapWriteBefore and asTrapWriteAfter

	8.5.6 Access Computation
	8.5.6.1 compute all Asg
	8.5.6.2 compute Asg
	8.5.6.3 compute access rights

	8.5.7 Diagnostics
	8.5.7.1 Dump
	8.5.7.2 Dump UAG
	8.5.7.3 Dump HAG
	8.5.7.4 Dump Rules
	8.5.7.5 Dump member
	8.5.7.6 Dump hash table

	8.6 Database Access Security
	8.6.1 Access Level definition
	8.6.2 Access Security Group definition
	8.6.3 Access Client Definition
	8.6.4 Database Access Library
	8.6.4.1 Initialization
	8.6.4.2 Routines used by Channel Access Server
	8.6.4.3 Routine to test asAddClient
	8.6.4.4 Subroutines attached to a subroutine record
	8.6.4.5 Diagnostic Routines

	8.7 Channel Access Security
	8.7.1 CA Server Interfaces to the Access Security System
	8.7.2 Client Interfaces

	8.8 Trapping Channel Access Writes
	8.9 Access Control: Implementation Overview
	8.9.1 Implementation Overview
	8.9.2 Locking

	8.10 Structures

	Chapter 9: IOC Test Facilities
	9.1 Overview
	9.2 Database List, Get, Put
	9.2.1 dbl
	9.2.2 dbgrep
	9.2.3 dba
	9.2.4 dbgf
	9.2.5 dbpf
	9.2.6 dbpr
	9.2.7 dbtr
	9.2.8 dbnr

	9.3 Breakpoints
	9.3.1 dbb
	9.3.2 dbd
	9.3.3 dbs
	9.3.4 dbc
	9.3.5 dbp
	9.3.6 dbap
	9.3.7 dbstat

	9.4 Error Logging
	9.4.1 eltc

	9.5 Hardware Reports
	9.5.1 dbior
	9.5.2 dbhcr

	9.6 Scan Reports
	9.6.1 scanppl
	9.6.2 scanpel
	9.6.3 scanpiol

	9.7 General Time
	9.7.1 generalTimeReport
	9.7.2 installLastResortEventProvider
	9.7.3 NTPTime_Report
	9.7.4 NTPTime_Shutdown
	9.7.5 ClockTime_Report
	9.7.6 ClockTime_Shutdown

	9.8 Access Security Commands
	9.8.1 asSetSubstitutions
	9.8.2 asSetFilename
	9.8.3 asInit
	9.8.4 asdbdump
	9.8.5 aspuag
	9.8.6 asphag
	9.8.7 asprules
	9.8.8 aspmem

	9.9 Channel Access Reports
	9.9.1 casr
	9.9.2 dbel
	9.9.3 dbcar
	9.9.4 ascar

	9.10 Interrupt Vectors
	9.10.1 veclist

	9.11 Miscellaneous
	9.11.1 epicsParamShow
	9.11.2 epicsEnvShow
	9.11.3 coreRelease

	9.12 Database System Test Routines
	9.12.1 dbtgf
	9.12.2 dbtpf
	9.12.3 dbtpn

	9.13 Record Link Reports
	9.13.1 dblsr
	9.13.2 dbcar
	9.13.3 dbhcr

	9.14 Old Database Access Testing
	9.14.1 gft
	9.14.2 pft
	9.14.3 tpn

	9.15 Routines to dump database information
	9.15.1 dbDumpPath
	9.15.2 dbDumpMenu
	9.15.3 dbDumpRecordType
	9.15.4 dbDumpField
	9.15.5 dbDumpDevice
	9.15.6 dbDumpDriver
	9.15.7 dbDumpRecord
	9.15.8 dbDumpBreaktable
	9.15.9 dbPvdDump

	Chapter 10: IOC Error Logging
	10.1 Overview
	10.2 Error Message Routines
	10.2.1 Basic Routines
	10.2.2 Log with Severity
	10.2.3 Status Routines
	10.2.4 Obsolete Routines

	10.3 errlog Listeners
	10.4 errlogThread
	10.5 console output and message queue size
	10.6 Status Codes
	10.7 iocLog
	10.7.1 iocLogServer
	10.7.2 iocLogClient
	10.7.3 Configuring a Private Log Server

	Chapter 11: Record Support
	11.1 Overview
	11.2 Overview of Record Processing
	11.3 Record Support and Device Support Entry Tables
	11.4 Example Record Support Module
	11.4.1 Declarations
	11.4.2 init_record
	11.4.3 process
	11.4.4 Miscellaneous Utility Routines
	11.4.5 Alarm Processing
	11.4.6 Raising Monitors

	11.5 Record Support Routines
	11.5.1 Generate Report of Each Field in Record
	11.5.2 Initialize Record Processing
	11.5.3 Initialize Specific Record
	11.5.4 Process Record
	11.5.5 Special Processing
	11.5.6 Get Value
	11.5.7 Convert dbAddr Definitions
	11.5.8 Get Array Information
	11.5.9 Put Array Information
	11.5.10 Get Units
	11.5.11 Get Precision
	11.5.12 Get Enumerated String
	11.5.13 Get Strings for Enumerated Field
	11.5.14 Put Enumerated String
	11.5.15 Get Graphic Double Information
	11.5.16 Get Control Double Information
	11.5.17 Get Alarm Double Information

	11.6 Global Record Support Routines
	11.6.1 Alarm Status and Severity
	11.6.2 Alarm Acknowledgment
	11.6.3 Generate Error: Process Variable Name, Caller, Message
	11.6.4 Generate Error: Status String, Record Name, Caller
	11.6.5 Generate Error: Record Name, Caller, Record Support Message
	11.6.6 Get Graphics Double
	11.6.7 Get Control Double
	11.6.8 Get Alarm Double
	11.6.9 Get Precision
	11.6.10 Get Time Stamp
	11.6.11 Forward link
	11.6.12 Initialize Constant Link

	Chapter 12: Device Support
	12.1 Overview
	12.2 Example Synchronous Device Support Module
	12.3 Example Asynchronous Device Support Module
	12.4 Device Support Routines
	12.4.1 Generate Device Report
	12.4.2 Initialize Device Processing
	12.4.3 Initialize Specific Record
	12.4.4 Get I/O Interrupt Information
	12.4.5 Other Device Support Routines

	12.5 Extended Device Support
	12.5.1 Rationale
	12.5.2 Initialization/Registration
	12.5.3 Device Support eXtension Table
	12.5.4 Add Record Routine
	12.5.5 Delete Record Routine
	12.5.6 Init Record Routine

	Chapter 13: Driver Support
	13.1 Overview
	13.2 Device Drivers
	13.2.0.1 init
	13.2.0.2 report
	13.2.0.3 Hardware Configuration

	Chapter 14: Static Database Access
	14.1 Overview
	14.2 Definitions
	14.2.1 DBBASE
	14.2.2 DBENTRY
	14.2.3 Field Types

	14.3 Allocating and Freeing DBBASE
	14.3.1 dbAllocBase
	14.3.2 dbFreeBase

	14.4 DBENTRY Routines
	14.4.1 Alloc/Free DBENTRY
	14.4.2 dbInitEntry dbFinishEntry
	14.4.3 dbCopyEntry dbCopyEntry Contents

	14.5 Read and Write Database
	14.5.1 Read Database File
	14.5.2 Write Database Definitons
	14.5.3 Write Record Instances

	14.6 Manipulating Record Types
	14.6.1 Get Number of Record Types
	14.6.2 Locate Record Type
	14.6.3 Get Record Type Name

	14.7 Manipulating Field Descriptions
	14.7.1 Get Number of Fields
	14.7.2 Locate Field
	14.7.3 Get Field Type
	14.7.4 Get Field Name
	14.7.5 Get Default Value
	14.7.6 Get Field Prompt

	14.8 Manipulating Record Attributes
	14.8.1 dbPutRecord Attribute
	14.8.2 dbGetRecord Attribute

	14.9 Manipulating Record Instances
	14.9.1 Get Number of Records
	14.9.2 Locate Record
	14.9.3 Get Record Name
	14.9.4 Create/Delete/Free Record
	14.9.5 Copy Record
	14.9.6 Rename Record
	14.9.7 Record Visibility
	14.9.8 Find Field
	14.9.9 Get/Put Field Values

	14.10 Manipulating Menu Fields
	14.10.1 Get Number of Menu Choices
	14.10.2 Get Menu Choice
	14.10.3 Get/Put Menu
	14.10.4 Locate Menu

	14.11 Manipulating Link Fields
	14.11.1 Link Types
	14.11.2 All Link Fields
	14.11.3 Constant and Process Variable Links

	14.12 Manipulating MenuForm Fields
	14.12.1 Alloc/Free Form
	14.12.2 Get/Put Form
	14.12.3 Verify Form
	14.12.4 Get Related Field
	14.12.5 Example

	14.13 Manipulating Information Items
	14.13.1 Locate Item
	14.13.2 Get Item Name
	14.13.3 Get/Set Item String Value
	14.13.4 Get/Set Item Pointer Value
	14.13.5 Create/Delete Item
	14.13.6 Convenience Routine

	14.14 Find Breakpoint Table
	14.15 Dump Routines
	14.16 Examples
	14.16.1 Expand Include
	14.16.2 dbDumpRecords

	Chapter 15: Runtime Database Access
	15.1 Overview
	15.2 Database Include Files
	15.2.1 dbDefs.h
	15.2.2 dbFldTypes.h
	15.2.3 dbAccess.h
	15.2.4 link.h

	15.3 Runtime Database Access Overview
	15.3.1 Database Request Types and Options
	15.3.2 Options Example
	15.3.3 ACKT and ACKS

	15.4 Database Access Routines
	15.4.1 dbNameToAddr
	15.4.2 Get Routines
	15.4.2.1 dbGetField
	15.4.2.2 dbGetLink and dbGetLinkValue
	15.4.2.3 dbGet

	15.4.3 Put Routines
	15.4.3.1 dbPutField
	15.4.3.2 dbPutLink and dbPutLinkValue
	15.4.3.3 dbPut

	15.4.4 Put Notify Routines
	15.4.4.1 putNotifyInit
	15.4.4.2 dbPutNotify
	15.4.4.3 dbNotifyCancel
	15.4.4.4 dbNotifyAdd
	15.4.4.5 dbNotifyCompletion

	15.4.5 Utility Routines
	15.4.5.1 dbBufferSize
	15.4.5.2 dbValueSize
	15.4.5.3 dbGetRset
	15.4.5.4 dbIsValueField
	15.4.5.5 dbGetFieldIndex
	15.4.5.6 dbGetNelements
	15.4.5.7 dbIsLinkConnected
	15.4.5.8 dbGetPdbAddrFromLink
	15.4.5.9 dbGetLinkDBFtype
	15.4.5.10 dbGetControlLimits
	15.4.5.11 dbGetGraphicLimits
	15.4.5.12 dbGetAlarmLimits
	15.4.5.13 dbGetPrecision
	15.4.5.14 dbGetUnits
	15.4.5.15 dbGetSevr
	15.4.5.16 dbGetTimeStamp

	15.4.6 Attribute Routine
	15.4.6.1 dbPutAttribute

	15.4.7 Process Routines
	15.4.7.1 dbScanPassive dbScanLink dbScanFwdLink
	15.4.7.2 dbProcess

	15.5 Runtime Link Modification
	15.6 Channel Access Monitors
	15.7 Lock Set Routines
	15.7.0.1 dbScanLock
	15.7.0.2 dbScanUnlock
	15.7.0.3 dbLockGetLockId
	15.7.0.4 dbLockInitRecords
	15.7.0.5 dbLockSetMerge
	15.7.0.6 dbLockSetSplitSl
	15.7.0.7 dbLockSetGblLock
	15.7.0.8 dbLockSetGblUnlock
	15.7.0.9 dbLockSetRecordLock

	15.8 Channel Access Database Links
	15.8.1 Basic Routines
	15.8.1.1 dbCaLinkInit
	15.8.1.2 dbCaAddLink
	15.8.1.3 dbCaAddLinkCallback
	15.8.1.4 dbCaRemoveLink
	15.8.1.5 dbCaGetLink
	15.8.1.6 dbCaPutLink
	15.8.1.7 dbCaPutLinkCallback

	15.8.2 Attributes of Link
	15.8.2.1 dbCaIsLinkConnected
	15.8.2.2 dbCaGetNelements
	15.8.2.3 dbCaGetSevr
	15.8.2.4 dbCaGetTimeStamp
	15.8.2.5 dbCaGetLinkDBFtype
	15.8.2.6 dbCaGetAttributes
	15.8.2.7 dbCaGetControlLimits
	15.8.2.8 dbCaGetGraphicLimits
	15.8.2.9 dbCaGetAlarmLimits
	15.8.2.10 dbCaGetPrecision
	15.8.2.11 dbCaGetUnits

	Chapter 16: EPICS General Purpose Tasks
	16.1 Overview
	16.2 General Purpose Callback Tasks
	16.2.1 Overview
	16.2.2 Syntax
	16.2.3 Example
	16.2.4 Callback Queue

	16.3 Task Watchdog

	Chapter 17: Database Scanning
	17.1 Overview
	17.2 Scan Related Database Fields
	17.2.1 SCAN
	17.2.2 PHAS
	17.2.3 EVNT - Event Number
	17.2.4 PRIO - Scheduling Priority

	17.3 Scan Related Software Components
	17.3.1 menuScan.dbd
	17.3.2 dbScan.h
	17.3.3 Initializing And Controlling Database Scaning
	17.3.4 Adding And Deleting Records From Scan List
	17.3.5 Obtaining the scan period from the SCAN field
	17.3.6 Declaring Database Event
	17.3.7 Interfacing to I/O Event Scanning

	17.4 Implementation Overview
	17.4.1 Definitions And Routines Common To All Scan Types
	17.4.2 Event Scanning
	17.4.2.1 post_event

	17.4.3 I/O Event Scanning
	17.4.3.1 scanIoInit
	17.4.3.2 scanIoRequest

	17.4.4 Periodic Scanning
	17.4.4.1 initPeriodic
	17.4.4.2 periodicTask

	17.4.5 Scan Once
	17.4.5.1 scanOnce
	17.4.5.2 SetQueueSize

	Chapter 18: IOC Shell
	18.1 Introduction
	18.2 IOC Shell Operation
	18.2.1 Environment variable parameter expansion
	18.2.2 Quoting
	18.2.3 Command-line editing and history
	18.2.4 Redirection
	18.2.5 Utility Commands
	18.2.6 ENVIRONMENT VARIABLES

	18.3 IOC Shell Programming
	18.3.1 Invoking the IOC shell
	18.3.2 Registering Commands
	18.3.3 Registrar Command Registration
	18.3.4 Automatic Command Registration

	Chapter 19: libCom
	19.1 bucketLib
	19.2 calc
	19.2.1 Infix Expression Syntax
	19.2.1.1 Numeric Literals
	19.2.1.2 Constants
	19.2.1.3 Variables
	19.2.1.4 Variable Assignment Operator
	19.2.1.5 Arithmetic Operators
	19.2.1.6 Algebraic Functions
	19.2.1.7 Trigonometric Functions
	19.2.1.8 Hyperbolic Trigonometry
	19.2.1.9 Numeric Functions
	19.2.1.10 Boolean Operators
	19.2.1.11 Bitwise Operators
	19.2.1.12 Relational Operators
	19.2.1.13 Conditional Operator
	19.2.1.14 Parentheses

	19.3 cppStd
	19.3.1 epicsAlgorithm

	19.4 epicsExit
	19.5 cvtFast
	19.6 cxxTemplates
	19.7 dbmf
	19.8 ellLib
	19.9 epicsRingBytes
	19.10 epicsRingPointer
	19.10.1 C++ Interface
	19.10.2 C interface

	19.11 epicsTimer
	19.11.1 C++ Interface
	19.11.1.1 epicsTimerNotify and epicsTimer
	19.11.1.2 epicsTimerQueue
	19.11.1.3 epicsTimerQueueActive
	19.11.1.4 epicsTimerQueueNotify and epicsTimerQueuePassive

	19.11.2 C Interface
	19.11.3 Example
	19.11.4 C Example

	19.12 fdmgr
	19.13 freeList
	19.14 gpHash
	19.15 logClient
	19.16 macLib
	19.17 misc
	19.17.1 aToIPAddr
	19.17.2 adjustment
	19.17.3 cantProceed
	19.17.4 dbDefs
	19.17.5 epicsConvert
	19.17.6 epicsString
	19.17.7 epicsTypes
	19.17.8 locationException
	19.17.9 shareLib.h
	19.17.10 truncateFile.h
	19.17.11 unixFileName.h
	19.17.12 epicsUnitTest.h

	Chapter 20: libCom OSI libraries
	20.1 Overview
	20.1.1 OSI source directory
	20.1.2 Rules for building OSI code
	20.1.3 Locating OSI header files.

	20.2 epicsAssert
	20.3 epicsEndian
	20.4 epicsEvent
	20.4.1 C++ Interface
	20.4.2 C Interface

	20.5 epicsFindSymbol
	20.6 epicsGeneralTime
	20.6.1 Consumer interface
	20.6.2 Provider Interface
	20.6.3 Internal Interface
	20.6.4 Example

	20.7 epicsInterrupt
	20.7.1 C Interface
	20.7.2 Implementation notes

	20.8 epicsMath
	20.9 epicsMessageQueue
	20.9.1 C++ Interface
	20.9.2 C interface

	20.10 epicsMutex
	20.10.1 C++ Interface
	20.10.2 C Interface
	20.10.3 Implementation Notes

	20.11 epicsStdlib
	20.12 epicsStdio
	20.13 epicsStdioRedirect
	20.14 epicsThread
	20.14.1 C Interface
	20.14.2 C++ Interface

	20.15 epicsTime
	20.15.1 Time Related Structures
	20.15.2 C++ Interface
	20.15.3 class epicsTimeEvent
	20.15.4 class epicsTime
	20.15.5 C Interface

	20.16 osiPoolStatus
	20.17 osiProcess
	20.18 osiSigPipeIgnore
	20.19 osiSock.h
	20.20 Device Support Library
	20.20.1 Overview
	20.20.2 Location Probing
	20.20.2.1 Read Probe
	20.20.2.2 Write Probe
	20.20.2.3 No Response Probe

	20.20.3 Registering VME Addresses
	20.20.3.1 Definitions of Address Types
	20.20.3.2 Register Address
	20.20.3.3 Print Address Map
	20.20.3.4 Unregister Address
	20.20.3.5 Allocate Address

	20.20.4 Interrupt Connection Routines
	20.20.4.1 Connect
	20.20.4.2 Disconnect
	20.20.4.3 Check If Used
	20.20.4.4 Enable
	20.20.4.5 Disable

	20.20.5 Macros for Normalized Analog Values
	20.20.5.1 Convert Digital Value to a Normalized Double Value
	20.20.5.2 Convert Normalized Double Value to a Digital Value

	20.20.6 Deprecated Interrupt Routines
	20.20.6.1 Definitions of Interrupt Types (deprecated)
	20.20.6.2 Connect (deprecated)
	20.20.6.3 Disconnect (deprecated)
	20.20.6.4 Enable Level (deprecated)
	20.20.6.5 Disable Level (deprecated)

	20.21 vxWorks Specific routines
	20.21.1 iocClock
	20.21.2 veclist
	20.21.3 logMsgToErrlog
	20.21.4 drvTS
	20.21.5 camacLib.h
	20.21.6 epicsDynLink
	20.21.7 module_types.h
	20.21.8 task_params.h
	20.21.9 vxComLibrary

	Chapter 21: Registry
	21.1 Registry.h
	21.2 registryRecordType.h
	21.3 registryDeviceSupport.h
	21.4 registryDriverSupport.h
	21.5 registryFunction.h
	21.6 registerRecordDeviceDriver.c
	21.7 registerRecordDeviceDriver.pl

	Chapter 22: Database Structures
	22.1 Overview
	22.2 Include Files
	22.3 Structures

	Chapter 23: INDEX

